Cgroups 是 Linux 系统内核提供的一种机制,这种机制可以根据需求将一些列系统任务机器子任务整合或分离到按资源划分登记的不同组内,从而为系统资源管理提供一个的框架。简单地说,cgroups 可以限制、记录任务组所使用的物理组员(比如 CPU、Memory、IO等),为容器实现虚拟化提供了基本保证,是构建 Docker 等一些列虚拟化管理工具的基石。今天我们就来详细介绍一下 cgroups 相关的内容。
从2013年开源的 Docker 推出、2014年开源的 Kubernetes 出现,到现在的云原生技术与生态的全面普及与火热化,容器技术已经逐步成为主流的基础云原生技术之一。使用容器技术,可以很好地实现资源层面上的限制和隔离,这都依赖于 Linux 系统内核所提供的Cgroups和 Namespace技术。
Cgroups
主要用来管理资源的分配、限制;Namespace
主要用来封装抽象、限制、隔离资源,使命名空间内的进程拥有它们自己的全局资源。
Linux内核提供的 Cgroups 和 Namespace 技术,为容器实现虚拟化提供了基本保证,是构建 Docker 等一些列虚拟化管理工具的基石。下面我们就来详细介绍一下 Cgroups 相关的内容。
Cgroups 是 control groups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组(process groups)所使用的物理资源(如 CPU、Memory、IO 等等)的机制。
通过使用 Cgroups,系统管理员在分配、排序、拒绝、管理和监控系统资源等方面,可以进行精细化控制。硬件资源可以在应用程序和用户间智能分配,从而增加整体效率。最初由 google 的工程师提出,后来被整合进 Linux 内核。也是目前轻量级虚拟化技术 XC(Linux Container)的基础之一。
Cgroups 和 Namespace 类似,也是将进程进行分组,但它的目的和 Namespace 不一 样,Namespace 是为了隔离进程组之间的资源,而 Cgroups 是为了对一组进程进行统一的资源监控和限制。
Cgroups 分 v1 和 v2 两个版本,v1 实现较早,功能比较多,但是由于它里面的功能都是零零散散的实现的,所以规划的不是很好,导致了一些使用和维护上的不便,v2 的出现 就是为了解决 v1 中这方面的问题,在最新的 4.5 内核中,Cgroups v2 声称已经可以用于生产环境了,但它所支持的功能还很有限,随着 v2 一起引入内核的还有 Cgroups、Namespace,v1 和 v2 可以混合使用,但是这样会更复杂,所以一般没人会这样用。
Cgroups 是 Linux 下的一种将进程按组进行管理的机制,在用户层看来,Cgroups 技术就是把系统中的所有进程组织成一颗一颗独立的树,每棵树都包含系统的所有进程,树的每个节点是一个进程组,而每颗树又和一个或者多个 subsystem 关联,树的作用是将进程分组,而 subsystem 的作用就是对这些组进行操作,Cgroups 的主体架构提如下:
Cgroups 主要包括下面两部分:
目前 Linux 支持 12 种 subsystem,如果不考虑不与任何 subsystem 关联的情况(systemd 就属于这种情况),Linux 里面最多可以建 12 颗 cgroup 树,每棵树关联一个 subsystem,当然也可以只建一棵树,然后让这 棵树关联所有的 subsystem。当一颗 cgroup 树不和任何 subsystem 关联的时候,意味着这棵树只是将进程进行分组,至于要在分组的基础上做些什么,将由应用程序自己决定, systemd 就是一个这样的例子。
在 Linux 里,一直以来就有对进程进行分组的概念和需求,比如 session group, progress group 等,后来随着人们对这方面的需求越来越多,比如需要追踪一组进程的内存和 IO 使用情况等,于是出现了 cgroup,用来统一将进程进行分组,并在分组的基础上对进程进行监控和资源控制管理等。
举个例子,Linux 系统中安装了杀毒软件 ESET 或者 ClamAV,杀毒时占用系统资源过高,影响系统承载业务运行,怎么办?单个虚拟机进程或者 docker 进程使用过高的资源,怎么办?单个Java进行占用系统过多的内存的资源,怎么办?
cgroup 就是能够控制并解决上述问题的工具,cgroup 在 linux 内核实现、用于控制 linux 系统资源。
在 CentOS 7 系统中(包括 Red Hat Enterprise Linux 7),通过将 cgroup 层级系统与 systemd 单位树捆绑,可以把资源管理设置从进程级别移至应用程序级别。默认情况下 systemd 会自动创建 slice、scope 和 service 单位的层级(具体的意思稍后再解释),来为 cgroup 树提供统一结构。
可以通过 systemctl 命令创建自定义 slice 进一步修改此结构。如果我们将系统的资源看成一块馅饼,那么所有资源默认会被划分为 3 个 cgroup:System, User 和 Machine。每一个 cgroup 都是一个 slice,每个 slice 都可以有自己的子 slice,如下图所示:
下面我们以 CPU 资源为例,来解释一下上图中出现的一些关键词。如上图所示,系统默认创建了 3 个顶级 slice(System, User 和 Machine),每个 slice 都会获得相同的 CPU 使用时间(仅在 CPU 繁忙时生效),如果 user.slice 想获得 100% 的 CPU 使用时间,而此时 CPU 比较空闲,那么 user.slice 就能够如愿以偿。这三种顶级 slice 的含义如下:
假设该系统上运行了 4 个 service,登录了两个用户,还运行了一个虚拟机。同时假设 每个进程都要求使用尽可能多的 CPU 资源(每个进程都很繁忙),则:
Cgroups 最初的目标是为资源管理提供的一个统一的框架,既整合现有的 cpuset 等子系统,也为未来开发新的子系统提供接口。现在的 cgroups 适用于多种应用场景,从单个进程的资源控制,到实现操作系统层次的虚拟化(OS Level Virtualization),框架图如下:
Cgroups提供了以下功能:
1)任务(task):在 cgroups 中,任务就是系统的一个进程。
2)控制族群(control group):控制族群就是一组按照某种标准划分的进程。Cgroups 中的资源控制都是以控制族群为单位实现。一个进程可以加入到某个控制族群,也从一个进程组迁移到另 一个控制族群。一个进程组的进程可以使用 cgroups 以控制族群为单位分配的资源,同时受到 cgroups 以控制族群为单位设定的限制。
3)层级(hierarchy):控制族群可以组织成 hierarchical 的形式,既一颗控制族群树。控制族 群树上的子节点控制族群是父节点控制族群的孩子,继承父控制族群的特定的属性。
4)子系统(subsystem):一个子系统就是一个资源控制器,比如 cpu 子系统就是控制 cpu 时间分配的一个控制器。子系统必须附加(attach)到一个层级上才能起作用,一个子系统附加到某个 层级以后,这个层级上的所有控制族群都受到这个子系统的控制。
可以看到,在 /sys/fs/cgroup
下面有很多 cpu、memory 这样的子目录,也就称为子系统 subsystem:
它是一组资源控制模块,一般包含如下几项:
可以通过查看 /proc/cgroups
(since Linux 2.6.24)知道当前系统支持哪些 subsystem,下面 是一个例子:
#subsys_name hierarchy num_cgroups enabled
cpuset 11 1 1
cpu 3 64 1
cpuacct 3 64 1
blkio 8 64 1
memory 9 104 1
devices 5 64 1
freezer 10 4 1
net_cls 6 1 1
perf_event 7 1 1
net_prio 6 1 1
hugetlb 4 1 1
pids 2 68 1
每一列的说明:
cgroup_disable
来控制 subsystem 的开启)。cpu 子系统用于控制 cgroup 中所有进程可以使用的 cpu 时间片。cpu subsystem 主要涉及5接口:cpu.cfs_period_us
、cpu.cfs_quota_us
、cpu.shares
、cpu.rt_period_us
、cpu.rt_runtime_us.cpu
。
cpu核心数 * cfs_period_us cpu
。cfs_quota_us/cfs_period_us
等于进程可以利用的 cpu cores,不能超过这个数值。而 cpu.shares 以相对比例限制 cgroup 的 cpu。例如:在两个 cgroup 中都将 cpu.shares 设定为 1 的任务将有相同的 CPU 时间,但在 cgroup 中将 cpu.shares 设定为 2 的任务可使用的 CPU 时间 是在 cgroup 中将 cpu.shares 设定为 1 的任务可使用的 CPU 时间的两倍。sched_rt_runtime_us
是实时任务的保证时间和最高占用时间,如果实时任务没有使用,可以分配给非实时任务,并且实时任务最终占用的时间不能超过这个数值,参考 Linux-85 关于 sched_rt_runtime_us
和 sched_rt_period_us
。对 cpu.rt_period_us
参数的限制是必须小于父目录中的同名参数值。对 cpu.rt_runtime_us
的限制是:Sum_{i} runtime_{i} / global_period <= global_runtime / global_period
即:
Sum_{i} runtime_{i} <= global_runtime
当前的实时进程调度算法可能导致部分实时进程被饿死,如下A和B是并列的,A的运行时时长正好覆盖了B的运行时间:
* group A: period=100000us, runtime=50000us
- this runs for 0.05s once every 0.1s
* group B: period= 50000us, runtime=25000us
- this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
Real-Time group scheduling 中提出正在开发 SCHED_EDF (Earliest Deadline First scheduling),优先调度最先结束的实时进程。
#若系统未安装则进行安装,若已安装则进行更新。
yum install libcgroup
#查看运行状态,并启动服务
[root@localhost ~] service cgconfig status
Stopped
[root@localhost ~] service cgconfig start
Starting cgconfig service: [ OK ]
service cgconfig status 9 Running 1011
#查看是否安装cgroup
[root@localhost ~] grep cgroup /proc/filesystems
8.4 查看 service 服务在哪个 cgroup 组
systemctl status [pid] | grep CGroup 23
cat /proc/[pid]/cgroup
cd /sys/fs/ && find * ‐name "*.procs" ‐exec grep [pid] {} /dev/null \; 2> /dev/null
#查看进程cgroup的最快方法是使用以下bash脚本按进程名:
#!/bin/bash
THISPID=`ps ‐eo pid,comm | grep $1 | awk '{print $1}'`
cat /proc/$THISPID/cgroup
在使用命令 systemctl set-property
时,可以使用 tab 补全:
$ systemctl set‐property user‐1000.slice
AccuracySec= CPUAccounting= Environment= LimitCPU= LimitNICE= LimitSIGPEN DING= SendSIGKILL=
BlockIOAccounting= CPUQuota= Group= LimitDATA= LimitNOFILE= LimitSTACK= U ser=
BlockIODeviceWeight= CPUShares= KillMode= LimitFSIZE= LimitNPROC= MemoryA ccounting= WakeSystem=
BlockIOReadBandwidth= DefaultDependencies= KillSignal= LimitLOCKS= LimitR SS= MemoryLimit=
BlockIOWeight= DeviceAllow= LimitAS= LimitMEMLOCK= LimitRTPRIO= Nice=
BlockIOWriteBandwidth= DevicePolicy= LimitCORE= LimitMSGQUEUE= LimitRTTIM E= SendSIGHUP=
这里有很多属性可以设置,但并不是所有的属性都是用来设置 cgroup 的,我们只需要关注 Block, CPU 和 Memory。
如果你想通过配置文件来设置 cgroup,service 可以直接在 /etc/systemd/system/xxx.service.d
目录下面创建相应的配置文件,slice 可以直接在 /run/systemd/system/xxx.slice.d
目录下面创建相应的配置文件。事实上通过 systemctl 命令行工具设置 cgroup 也会写到该目录下的配置文件中:
$ cat /run/systemd/system/user‐1000.slice.d/50‐CPUQuota.conf
[Slice]
CPUQuota=20%
如果想严格控制 CPU 资源,设置 CPU 资源的使用上限,即不管 CPU 是否繁忙,对 CPU 资源的使用都不能超过这个上限。可以通过以下两个参数来设置:
systemctl 可以通过 CPUQuota 参数来设置 CPU 资源的使用上限。例如,如果你想将用户 tom 的 CPU 资源使用上限设置为 20%,可以执行以下命令:
$ systemctl set‐property user‐1000.slice CPUQuota=20%
cgroup 配置文件所在位置 /etc/cgconfig.conf,其默认配置文件内容
mount {
cpuset = / cgroup / cpuset ;
cpu = / cgroup / cpu ;
cpuacct = / cgroup / cpuacct ;
memory = / cgroup / memory ;
devices = / cgroup / devices ;
freezer = / cgroup / freezer ;
net_cls = / cgroup / net_cls ;
blkio = / cgroup / blkio ;
}
相当于执行命令:
mkdir /cgroup/cpuset
mount ‐t cgroup ‐o cpuset red /cgroup/cpuset
……
mkdir /cgroup/blkio
[root@localhost ~] vi /etc/cgrules.conf
[root@localhost ~] echo 524288000 > /cgroup/memory/foo/memory.limit_in_b ytes
使用 cgroup 临时对进程进行调整,直接通过命令即可,如果要持久化对进程进行控制,即重启后依然有效,需要写进配置文件 /etc/cgconfig.conf
及 /etc/cgrules.conf
。
1)systemd-cgls 命令:通过 systemd-cgls 命令来查看,它会返回系统的整体 cgroup 层级,cgroup 树的最高层 由 slice 构成,如下所示:
$ systemd‐cgls ‐‐no‐page
├─1 /usr/lib/systemd/systemd ‐‐switched‐root ‐‐system ‐‐deserialize 22
├─user.slice
│ ├─user‐1000.slice
│ │ └─session‐11.scope
│ │ ├─9507 sshd: tom [priv]
│ │ ├─9509 sshd: tom@pts/3
│ │ └─9510 ‐bash
│ └─user‐0.slice
│ └─session‐1.scope
│ ├─ 6239 sshd: root@pts/0
│ ├─ 6241 ‐zsh
│ └─11537 systemd‐cgls ‐‐no‐page
└─system.slice 15 ├─rsyslog.service
│ └─5831 /usr/sbin/rsyslogd ‐n
├─sshd.service 18 │ └─5828 /usr/sbin/sshd ‐D
├─tuned.service
│ └─5827 /usr/bin/python2 ‐Es /usr/sbin/tuned ‐l ‐P 21 ├─crond.service
│ └─5546 /usr/sbin/crond ‐n
可以看到系统 cgroup 层级的最高层由 user.slice 和 system.slice 组成。因为系统中没有 运行虚拟机和容器,所以没有 machine.slice,所以当 CPU 繁忙时,user.slice 和 system.slice 会各获得 50% 的 CPU 使用时间。
user.slice 下面有两个子 slice:user-1000.slice 和 user-0.slice,每个子 slice 都用 User ID (UID) 来命名,因此我们很容易识别出哪个 slice 属于哪个用户。例如从上面的输出信息中可以看出 user-1000.slice 属于用户 tom,user-0.slice 属于用户 root。
2)systemd-cgtop 命令:systemd-cgls 命令提供的只是 cgroup 层级的静态信息快照,要想查看 cgroup 层级的动 态信息,可以通过 systemd-cgtop 命令查看:
$ systemd‐cgtop
Path Tasks %CPU Memory Input/s Output/s
/ 161 1.2 161.0M ‐ ‐ 5 /system.slice ‐ 0.1 ‐ ‐ ‐
/system.slice/vmtoolsd.service 1 0.1 ‐ ‐ ‐
/system.slice/tuned.service 1 0.0 ‐ ‐ ‐
/system.slice/rsyslog.service 1 0.0 ‐ ‐ ‐
/system.slice/auditd.service 1 ‐ ‐ ‐ ‐
/system.slice/chronyd.service 1 ‐ ‐ ‐ ‐
/system.slice/crond.service 1 ‐ ‐ ‐ ‐
/system.slice/dbus.service 1 ‐ ‐ ‐ ‐
/system.slice/gssproxy.service 1 ‐ ‐ ‐ ‐
/system.slice/lvm2‐lvmetad.service 1 ‐ ‐ ‐ ‐
/system.slice/network.service 1 ‐ ‐ ‐ ‐
/system.slice/polkit.service 1 ‐ ‐ ‐ ‐
/system.slice/rpcbind.service 1 ‐ ‐ ‐ ‐
/system.slice/sshd.service 1 ‐ ‐ ‐ ‐
/system.slice/system‐getty.slice/getty@tty1.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐journald.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐logind.service 1 ‐ ‐ ‐ ‐
/system.slice/systemd‐udevd.service 1 ‐ ‐ ‐ ‐
/system.slice/vgauthd.service 1 ‐ ‐ ‐ ‐
/user.slice 3 ‐ ‐ ‐ ‐
/user.slice/user‐0.slice/session‐1.scope 3 ‐ ‐ ‐ ‐
/user.slice/user‐1000.slice 3 ‐ ‐ ‐ ‐
/user.slice/user‐1000.slice/session‐11.scope 3 ‐ ‐ ‐ ‐
/user.slice/user‐1001.slice/session‐8.scope
scope systemd-cgtop 提供的统计数据和控制选项与 top 命令类似,但该命令只显示那些开启了 资源统计功能的 service 和 slice。
如果你想开启 sshd.service
的资源统计功能,可以进行如下操作:
$ systemctl set‐property sshd.service CPUAccounting=true MemoryAccounting=true
#该命令会在 /etc/systemd/system/sshd.service.d/ 目录下创建相应的配置文件:
$ ll /etc/systemd/system/sshd.service.d/
总用量 8
4 ‐rw‐r‐‐r‐‐ 1 root root 28 5月 31 02:24 50‐CPUAccounting.conf
4 ‐rw‐r‐‐r‐‐ 1 root root 31 5月 31 02:24 50‐MemoryAccounting.conf
$ cat /etc/systemd/system/sshd.service.d/50‐CPUAccounting.conf
[Service]
CPUAccounting=yes 1415
$ cat /etc/systemd/system/sshd.service.d/50‐MemoryAccounting.conf
[Service]
MemoryAccounting=yes 1819
#配置完成之后,再重启 sshd 服务:
$ systemctl daemon‐reload 21 $ systemctl restart sshd
这时再重新运行 systemd‐cgtop
命令,就能看到 sshd 的资源使用统计了。
如何查看当前进程属于哪些 cgroup 可以通过查看 /proc/[pid]/cgroup
(since Linux 2.6.24)知道指定进程属于哪些cgroup,如下:
$ cat /proc/777/cgroup
11:cpuset:/
10:freezer:/
9:memory:/system.slice/cron.service
8:blkio:/system.slice/cron.service
7:perf_event:/ 7 6:net_cls,net_prio:/
5:devices:/system.slice/cron.service
4:hugetlb:/
3:cpu,cpuacct:/system.slice/cron.service
2:pids:/system.slice/cron.service
1:name=systemd:/system.slice/cron.service
每一行包含用冒号隔开的三列,他们的意思分别是:
cgroup树的ID :和cgroup树绑定的所有subsystem :进程在cgroup树中的路径
/proc/cgroups
文件中的 ID 一一对应。name=systemd
表示没有和任何 subsystem 绑定,只是给他起了个名字叫 systemd。/sys
查看 cgroup查看 cgroup 下 CPU 资源的使用上限:
$ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user‐1000.slice/cpu.cfs_perio d_us
100000
$ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user‐1000.slice/cpu.cfs_quota _us
20000
这表示用户 tom 在一个使用周期内(100 毫秒)可以使用 20 毫秒的 CPU 时间。不管 CPU 是否空闲,该用户使用的 CPU 资源都不会超过这个限制。
CPUQuota 的值可以超过 100%,例如:如果系统的 CPU 是多核,且 CPUQuota 的值为 200%,那么该 slice 就能够使用 2 核的 CPU 时间。
来源:https://blog.csdn.net/chenlycly/article/details/125956805
本文由哈喽比特于1年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/0EUVP__P4SX9waTeKswgzg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。