字节跳动百万级Metrics Agent性能优化的探索与实践

发表于 11月以前  | 总阅读数:664 次

背景

metricserver2 (以下简称Agent)是与字节内场时序数据库 ByteTSD 配套使用的用户指标打点 Agent,用于在物理机粒度收集用户的指标打点数据,在字节内几乎所有的服务节点上均有部署集成,装机量达到百万以上。此外Agent需要负责打点数据的解析、聚合、压缩、协议转换和发送,属于CPU和Mem密集的服务。两者结合,使得Agent在监控全链路服务成本中占比达到70%以上,对Agent进行性能优化,降本增效是刻不容缓的命题。本文将介绍我们在Agent性能优化上的探索和实践。

基本架构

  • Receiver 监听socket、UDP端口,接收SDK发出的metrics数据
  • Msg-Parser对数据包进行反序列化,丢掉不符合规范的打点,然后将数据点暂存在Storage中
  • Storage支持7种类型的metircs指标存储
  • Flusher在每个发送周期的整时刻,触发任务获取Storage的快照,并对其存储的metrics数据进行聚合,将聚合后的数据按照发送要求进行编码
  • Compress对编码的数据包进行压缩
  • Sender支持HTTP和TCP方式,将数据发给后端服务

我们将按照数据接收、数据处理、数据发送三个部分来分析Agent优化的性能热点。

数据接收

Case 1

Agent与用户SDK通信的时候,使用 msgpack 对数据进行序列化。它的数据格式与json类似,但在存储时对数字、多字节字符、数组等都做了优化,减少了无用的字符,下图是其与json的简单对比:

Agent在获得数据后,需要通过msgpack.unpack进行反序列化,然后把数据重新组织成 std::vector。这个过程中,有两步复制的操作,分别是:从上游数据反序列为 msgpack::object 和 msgpack::object 转换 std::vector。

{ // Process Function
    msgpack::unpacked msg;
    msgpack::unpack(&msg, buffer.data(), buffer.size());
    msgpack::object obj = msg.get();

    std::vector<std::vector<std::string>> vecs;
    if (obj.via.array.ptr[0].type == 5) {
        std::vector<std::string> vec;
        obj.convert(&vec);
        vecs.push_back(vec);
    } else if (obj.via.array.ptr[0].type == 6) {
        obj.convert(&vecs);
    } else {
        ++fail_count;
        return result;
    }

    // Some more process steps
}

但实际上,整个数据的处理都在处理函数中。这意味着传过来的数据在整个处理周期都是存在的,因此这两步复制可以视为额外的开销。

msgpack协议在对数据进行反序列化解析的时候,其内存管理的基本逻辑如下:

为了避免复制 string,bin 这些类型的数据,msgpack 支持在解析的时候传入一个函数,用来决定这些类型的数据是否需要进行复制:

因此在第二步,对 msgpack::object 进行转换的时候,我们不再转换为 string,而是使用 string_view,可以优化掉 string 的复制和内存分配等:

// Define string_view convert struct.
template <>
struct msgpack::adaptor::convert<std::string_view> {
    msgpack::object const& operator()(msgpack::object const& o, std::string_view& v) const {
        switch (o.type) {
        case msgpack::type::BIN:
            v = std::string_view(o.via.bin.ptr, o.via.bin.size);
            break;
        case msgpack::type::STR:
            v = std::string_view(o.via.str.ptr, o.via.str.size);
            break;
        default:
            throw msgpack::type_error();
            break;
        }
        return o;
    }
};

static bool string_reference(msgpack::type::object_type type, std::size_t, void*) {
    return type == msgpack::type::STR;
}

{ 
    msgpack::unpacked msg;
    msgpack::unpack(msg, buffer.data(), buffer.size(), string_reference);
    msgpack::object obj = msg.get();

    std::vector<std::vector<std::string_view>> vecs;
    if (obj.via.array.ptr[0].type == msgpack::type::STR) {
        std::vector<std::string_view> vec;
        obj.convert(&vec);
        vecs.push_back(vec);
    } else if (obj.via.array.ptr[0].type == msgpack::type::ARRAY) {
        obj.convert(&vecs);
    } else {
        ++fail_count;
        return result;
    }
}

经过验证可以看到:零拷贝的时候,转换完的所有数据的内存地址都在原来的的 buffer 的内存地址范围内。而使用 string 进行复制的时候,内存地址和 buffer 的内存地址明显不同。

Case 2

Agent在接收端通过系统调用完成数据接收后,会立刻将数据投递到异步的线程池内,进行数据的解析工作,以达到不阻塞接收端的效果。但我们在对线上数据进行分析时发现,用户产生的数据包大小是不固定的,并且存在大量的小包(比如一条打点数据)。这会导致异步线程池内的任务数量较多,平均每个任务的体积较小,线程池需要频繁的从队列获取新的任务,带来了处理性能的下降。

因此我们充分理解了msgpack的协议格式(https://github.com/msgpack/msgpack/blob/master/spec.md)后,在接收端将多个数据小包(一条打点数据)聚合成一个数据大包(多条打点数据),进行一次任务提交,提高了接收端的处理性能,降低了线程切换的开销。

static inline bool tryMerge(std::string& merge_buf, std::string& recv_buf, int msg_size, int merge_buf_cap) {
    uint16_t big_endian_len, host_endian_len, cur_msg_len;

    memcpy(&big_endian_len, (void*)&merge_buf[1], sizeof(big_endian_len));
    host_endian_len = ntohs(big_endian_len);
    cur_msg_len = recv_buf[0] & 0x0f;

    if((recv_buf[0] & 0xf0) != 0x90 || merge_buf.size() + msg_size > merge_buf_cap || host_endian_len + cur_msg_len > 0xffff) {
        // upper 4 digits are not 1001
        // or merge_buf cannot hold anymore data
        // or array 16 in the merge_buf cannot hold more objs (although not possible right now, but have to check)
        return false;
    }

    // start merging
    host_endian_len += cur_msg_len;
    merge_buf.append(++recv_buf.begin(), recv_buf.begin() + msg_size);

    // update elem cnt in array 16
    big_endian_len = htons(host_endian_len);

    memcpy((void*)&merge_buf[1], &big_endian_len, sizeof(big_endian_len));
    return true;
}

{ // receiver function 
    // array 16 with 0 member
    std::string merge_buf({(char)0xdc, (char)0x00, (char)0x00});

    for(int i = 0 ; i < 1024; ++i) {
        int r = recv(fd, const_cast<char *>(tmp_buffer_.data()), tmp_buffer_size_, 0);
        if (r > 0) {
            if(!tryMerge(merge_buf, tmp_buffer_, r, tmp_buffer_size_)) {
                // Submit Task
            }
        // Some other logics
    }
}

从关键的系统指标的角度看,在merge逻辑有收益时(接收QPS = 48k,75k,120k,150k),小包合并逻辑大大减少了上下文切换,执行指令数,icache/dcache miss,并且增加了IPC(instructions per cycle)见下表:

同时通过对前后火焰图的对比分析看,在合并数据包之后,原本用于调度线程池的cpu资源更多的消耗在了收包上,也解释了小包合并之后context switch减少的情况。

Case 3

用户在打点指标中的Tags,是拼接成字符串进行纯文本传递的,这样设计的主要目的是简化SDK和Agent之间的数据格式。但这种方式就要求Agent必须对字符串进行解析,将文本化的Tags反序列化出来,又由于在接收端收到的用户打点QPS很高,这也成为了Agent的性能热点。

早期Agent在实现这个解析操作时,采用了遍历字符串的方式,将字符串按|=分割成 key-value 对。在其成为性能瓶颈后,我们发现它很适合使用SIMD进行加速处理。

原版

inline bool is_tag_split(const char &c) {
    return c == '|' || c == ' ';
}

inline bool is_kv_split(const char &c) {
    return c == '=';
}

bool find_str_with_delimiters(const char *str, const std::size_t &cur_idx, const std::size_t &end_idx,
    const Process_State &state, std::size_t *str_end) {
    if (cur_idx >= end_idx) {
        return false;
    }
    std::size_t index = cur_idx;
    while (index < end_idx) {
        if (state == TAG_KEY) {
            if (is_kv_split(str[index])) {
                *str_end = index;
                return true;
            } else if (is_tag_split(str[index])) {
                return false;
            }
        } else {
            if (is_tag_split(str[index])) {
                *str_end = index;
                return true;
            }
        }
        index++;
    }
    if (state == TAG_VALUE) {
        *str_end = index;
        return true;
    }
    return false;
}

SIMD

#if defined(__SSE__)
static std::size_t find_key_simd(const char *str, std::size_t end, std::size_t idx) {
    if (idx >= end) { return 0; }

    for (; idx + 16 <= end; idx += 16) {
        __m128i v = _mm_loadu_si128((const __m128i*)(str + idx));
        __m128i is_tag = _mm_or_si128(_mm_cmpeq_epi8(v, _mm_set1_epi8('|')),
                                     _mm_cmpeq_epi8(v, _mm_set1_epi8(' ')));
        __m128i is_kv = _mm_cmpeq_epi8(v, _mm_set1_epi8('='));

        int tag_bits = _mm_movemask_epi8(is_tag);
        int kv_bits = _mm_movemask_epi8(is_kv);
        // has '|' or ' ' first
        bool has_tag_first = ((kv_bits - 1) & tag_bits) != 0;
        if (has_tag_first) { return 0; }
        if (kv_bits) { // found '='
            return idx + __builtin_ctz(kv_bits);
        }
    }

    for (; idx < end; ++idx) {
        if (is_kv_split(str[idx])) { return idx; } 
        else if (is_tag_split(str[idx])) { return 0; }
    }

    return 0;
}

static std::size_t find_value_simd(const char *str, std::size_t end, std::size_t idx) {
    if (idx >= end) { return 0; }

    for (; idx + 16 <= end; idx += 16) {
        __m128i v = _mm_loadu_si128((const __m128i*)(str + idx));
        __m128i is_tag = _mm_or_si128(_mm_cmpeq_epi8(v, _mm_set1_epi8('|')),
                                     _mm_cmpeq_epi8(v, _mm_set1_epi8(' ')));
        int tag_bits = _mm_movemask_epi8(is_tag);
        if (tag_bits) {
            return idx + __builtin_ctz(tag_bits);
        }
    }

    for (; idx < end; ++idx) {
        if (is_tag_split(str[idx])) { return idx; }
    }

    return idx;
}

构建的测试用例格式为 。text 则是测试例子里的 str_size,用来测试不同 str_size 下使用 simd 的收益。可以看到,在 str_size 较大时,simd 性能明显高于标量的实现。

str_sizesimdscalar
1109140
2145158
4147198
8143283
16155459
32168809
642201589
1282893216
2564776297
51288312494
1024168724410

数据处理

Case 1

Agent在数据聚合过程中,需要一个map来存储一个指标的所有序列,用于对一段时间内的打点值进行聚合计算,得到一个固定间隔的观测值。这个map的key是指标的tags,map的value是指标的值。我们通过采集火焰图发现,这个map的查找操作存在一定程度的热点。

下面是 _M_find_before_node 的实现:

这个函数作用是:算完 hash 后,在 hash 桶里找到匹配 key 的元素。这也意味着,即使命中了,hash 查找的时候也要进行一次 key 的比较操作。而在 Agent 里,这个 key 的比较操作定义为:

bool operator==(const TagSet &other) const {
        if (tags.size() != other.tags.size()) {
            return false;
        }
        for (size_t i = 0; i < tags.size(); ++i) {
            auto &left = tags[i];
            auto &right = other.tags[i];
            if (left.key_ != right.key_ || left.value_ != right.value_) {
                return false;
            }
        }
        return true;
    }

这里需要遍历整个 Tagset 的元素并比较他们是否相等。在查找较多的情况下,每次 hash 命中后都要进行这样一次操作是非常耗时的。可能导致时间开销增大的原因有:

  1. 每个 tag 的 key_ 和 value_ 是单独的内存(如果数据较短,stl 不会额外分配内存,这样的情况下就没有单独分配的内存了),存在着 cache miss 的开销,硬件预取效果也会变差;
  2. 需要频繁地调用 memcmp 函数;
  3. 按个比较每个 tag,分支较多。

因此,我们将 TagSet 的数据使用 string_view 表示,并将所有的 data 全部存放在同一块内存中。在 dictionary encode 的时候,再把 TagSet 转换成 string 的格式返回出去。

// TagView 
#include <functional>
#include <string>
#include <vector>

struct TagView {
    TagView() = default;
    TagView(std::string_view k, std::string_view v) : key_(k), value_(v) {}
    std::string_view key_;
    std::string_view value_;
};

struct TagViewSet {
    TagViewSet() = default;
    TagViewSet(const std::vector<TagView> &tgs, std::string&& buffer) : tags(tgs), 
        tags_buffer(std::move(buffer)) {}
    TagViewSet(std::vector<TagView> &&tgs, std::string&& buffer) { tags = std::move(tgs); }
    TagViewSet(const std::vector<TagView> &tgs, size_t buffer_assume_size) {
        tags.reserve(tgs.size());
        tags_buffer.reserve(buffer_assume_size);
        for (auto& tg : tgs) {
            tags_buffer += tg.key_;
            tags_buffer += tg.value_;
        }
        const char* start = tags_buffer.c_str();
        for (auto& tg : tgs) {
            std::string_view key(start, tg.key_.size());
            start += key.size();
            std::string_view value(start, tg.value_.size());
            start += value.size();
            tags.emplace_back(key, value);
        }
    }

    bool operator==(const TagViewSet &other) const {
        if (tags.size() != other.tags.size()) {
            return false;
        }
        // not compare every tag
        return tags_buffer == other.tags_buffer;
    }

    std::vector<TagView> tags;
    std::string tags_buffer;
};

struct TagViewSetPtrHash {
    inline std::size_t operator()(const TagViewSet *tgs) const {
        return std::hash<std::string>{}(tgs->tags_buffer);
    }
};

验证结果表明,当 Tagset 中 kv 的个数大于 2 的时候,新方法性能较好。

数据发送

Case 1

早期Agent使用zlib进行数据发送前的压缩,随着用户打点规模的增长,压缩逐步成为了Agent的性能热点。

因此我们通过构造满足线上用户数据特征的数据集,对常用的压缩库进行了测试:

zlib使用cloudflare

zlib使用1.2.11

通过测试结果我们可以看到,除bzip2外,其他压缩算法均在不同程度上优于zlib:

  • zlib的高性能分支,基于cloudflare优化 比 1.2.11的官方分支性能好,压缩CPU开销约为后者的37.5%

  • 采用SIMD指令加速计算

  • zstd能够在压缩率低于zlib的情况下,获得更低的cpu开销,因此如果希望获得比当前更好的压缩率,可以考虑zstd算法

  • 若不考虑压缩率的影响,追求极致低的cpu开销,那么snappy是更好的选择

结合业务场景考虑,我们最终执行短期使用 zlib-cloudflare 替换,长期使用 zstd 替换的优化方案。

结论

上述优化取得了非常好的效果,经过上线验证得出:

  • CPU峰值使用量降低了10.26%,平均使用量降低了6.27%
  • Mem峰值使用量降低了19.67%,平均使用量降低了19.81%

综合分析以上性能热点和优化方案,可以看到我们对Agent优化的主要考量点是:

  • 减少不必要的内存拷贝
  • 减少程序上下文的切换开销,提高缓存命中率
  • 使用SIMD指令来加速处理关键性的热点逻辑

除此之外,我们还在开展 PGO 和 clang thinLTO 的验证工作,借助编译器的能力来进一步优化Agent性能。

参考引用

  1. v2_0_cpp_unpacker:https://github.com/msgpack/msgpack-c/wiki/v2_0_cpp_unpacker#memory-management
  2. messagepack-specification:https://github.com/msgpack/msgpack/blob/master/spec.md
  3. Cloudflare fork of zlib with massive performance improvements:https://github.com/RJVB/zlib-cloudflare
  4. Intel® Intrinsics Guide:https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
  5. Profile-guided optimization:https://en.wikipedia.org/wiki/Profile-guided_optimization
  6. ThinLTO:https://clang.llvm.org/docs/ThinLTO.html

本文由哈喽比特于11月以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/bl1HbC6ti6Pw2FGxgstfBw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237267次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8105次阅读
 目录