针对业务问题,本文研究了多种计算引擎实现方案,并基于Clang/LLVM实现了一个C/C++解释器,同时还探讨了相关的Clang编译技术在实现过程中的应用。
从工程角度来看,对日志流量进行分析是安全业务研发的重要内容。如果将与“坏人”进行安全对抗比作一场长期持久的战争,那么特征计算系统就是对抗“坏人”的重要武器系统。该系统的功能是消费日志流,进行分析计算,并输出特征信息。在传统模式下,各个特征计算模块分散、无管理、缺乏标准化,难以与其他武器系统对接,导致特征开发效率低下,进而使特征计算武器系统的威力不足。
下图是特征计算模块的开发流程:流程漫长费时效率低,满足不了安全武器系统的快速响应打击“坏人”的需求。
为了解决上述问题,我们研发了新一代的特征计算系统,架构图如下:
在新系统中,我们将计算逻辑脚本化,极大的简化了开发流程,并且做了大量的标准化工作。例如现在需要计算一个特征数据z,计算逻辑是对输入日志流的数据x和y的求和,开发人员只需要在Web页面编辑脚本: z = x + y, 然后点击发布脚本就可迅速上线,快速的输出特征。
在上述的架构中,执行引擎执行用户编辑的计算逻辑,如 z = x + y, 对输入数据进行计算,输出需要的特征,是系统的核心组件。
执行引擎的实现有多种方案可选,如下图所示的6种方案。每个方案都有各自的优劣,实际工程可以根据需求进行选择或组合。在业界,许多选择使用Python引擎、Lua引擎或两者的组合来执行用户编辑的Python脚本或Lua脚本。
下面描述了各个方案并列出了各方案的特点:
微信安全采用的是一个自研的DSL引擎,并在此基础上扩展。原因是性能相对高,并且已被其他重要安全系统使用验证。
DSL(Domain-Specific Language)是用于特定领域的编程语言,例如SQL就是一种DSL。我们自研DSL引擎,实际上是开发了一种自定义的编程语言,使用这种编程语言来编写特征计算逻辑。要实现一种编程语言,当然要实现这种语言的编译器和执行器,下面将介绍DSL引擎的实现和存在的问题。
下图实现展示了微信自研DSL语言的实现,首先定义了词法描述文件和语法描述文件,采用 Lex 和 Yacc 生成词法分析器Lexer和语法解析器Parser, 在这里Parser的输出逆波兰表达式,存储在内存中,然后解释执行表达式。整个DSL的引擎可以分为2部分:编译和执行,编译1次,然后对每条输入数据解释执行编译后的表达式。
在业务接入和运营过程中发现3个主要的问题:
自研DSL是一门新的语言,业务不熟悉使用,业务同学从原来的C++开发计算特征,转为使用DSL,存在大量疑问,需要大量的研发支持, 尽管已经提供了丰富的文档支持。这无疑是公司内推广/公司外开源的阻碍,在缺少研发的大力支持下,大家愿意学习新的DSL语言吗?使用业务通用熟悉的语言,可以更好的提升影响力,减少接入阻碍,需要的研发支持也更少。
前面也提到特征计算系统采用的是一个自研的DSL引擎,并在此基础上扩展,为什么原来DSL语言不存在上述问题。因为原来DSL用于安全策略场景,主要是做逻辑判断和条件判断,例如支持+-*/和< = > if else 等简单操作即可,很容易上手,反而不需要复杂的语言特性。
但是特征计算场景,侧重于计算,需要大量的计算函数,库函数,rpc调用等,需要的语言语法特性复杂的多,因为扩展的DSL也变得复杂,由此诞生了上述的问题。
实现一门可用性好的编程语言,除了实现语言本身,需要需要实现大量的基础库,例如需要实现字符串string库,http库,protobuf库,vector和map等数据结构,自研DSL也一样,需要耗费大量精力在重新实现这些库上,而且随业务需求还一直在更新,不能完备。并且自研的库函数使用风格也和C++库使用有较大差别,学习成本高。下面是DSL语言和库与C++的对比, 微信后台有成熟的C++基建,大家很熟悉C/C++语法。
DSL编译过程中无通用的中间表示,无法使用业界已有的程序优化算法,所以性能仍然不是很高。DSL的编译报错提示不友好不准确,因为语法解析器Parser采用的是Yacc工具生成,Yacc使用的是LALR算法, 该算法缺陷之一是编译报错提示不够准确友好,实际使用过程中也是如此,业务同学也是常咨询“这段DSL代码哪里错了?”。另外一个是扩展性较差,例如我们想基于DSL的parser 实现一个类似clangd的代码补全和提示工具,提升DSL脚本开发体验,几乎很难实现,因为DSL的编译器实现紧耦合没有模块化,我们只能基于很原始的字符串匹配来实现代码补全提示。
微信后台主要使用C++作为编程语言,基础设施基本是以C++模块构建的,并积累了丰富的C++库。在安全业务中,一开始就选择了使用C++语言进行特征计算。如果将脚本语言也采用C++,业务同学可以熟练地使用,并且可以兼容现有的C++库和标准库,无需重新开发各种库。然而,C++是一种静态编译语言,是否能改为解释执行呢?我们进行了调研,并基于Clang前端和LLVM JIT技术实现了一个C++执行引擎,即一个C++解释器。其结构如下:
DSL引擎面对的问题C++引擎都可以完美的解决,C/C++语言容易接入学习成本低,开源易提升影响力;支持的库丰富无需重复开发;最好的LLVM编译优化和JIT执行带来了和二进制执行一样的高性能, 基于Clang前端因此有世界上最友好的C/C++编译报错提示,同样得益于Clang和LLVM模块话带来了极强的扩展性。
举几个例子说明C++引擎的扩展性,例如我们可以基于Clang 的前端库实现类型clangd的代码补全提示。采用这个结构还能快速的支持其他语言,例如rust语言作为开发语言;除了JIT执行,还能扩展生成WebAssembly,通过v8执行。
C/C++是静态编译语言,但C/C++能否解释执行呢?答案是Yes,本文基于Clang和LLVM,不到500行代码,实现了C/C++解释器ccint,ccint源代码在GitHub可获取。其结构如下图所示:
C/C++文件被Clang前端经过预处理,词法分析,语法分析,语义检查,编译成LLVM中间表示,即LLVM IR。注意Clang前端并不是Clang二进制程序, 而是Clang编译器提供的前端库,LLVM IR经过LLVM优化器,根据优化级别生成优化后的LLVM IR存储在内存中, 常见的优化有常量传播,常量折叠,死代码删除,循环向量化等等。优化后的LLVM IR被 LLVM ORC JIT执行,输出结果。JIT的执行使用了LLVM后端代码生成技术,输入LLVM IR 输出二进制指令到内存,然后调用指定的函数符号执行。
使用ccint解释器输出"hello world"
/* main.cpp */
#include <stdio.h>
#include <vector>
#include <string>
void ccint_main() {
std::vector<std::string> vec = {"hello", " world\n"};
for (auto &s : vec) {
printf("%s", s.c_str());
}
}
$ ./ccint main.cpp
hello world
上面的例子使用标准库的vector类和string类以及printf函数,解释器执行函数ccint_main, 可以看到解释器很好的支持了C/C++标准库。
ccint解释器还有有如下的特性
支持完整的C++11/C++14/C++17语法;支持标准库/动态库/静态库;采用了JIT技术因此和C/C++二进制有相同的性能;模块化编译和执行分离,方便使用到业务上。
ccint解释器 在GitHub 还有展示动态库静态库 和指定头文件搜索路径例子,可以参考。
ccint灵感来源于cling,cling是一个基于Clang和LLVM的交互式C/C++解释器,由欧洲核子研究中心开发,用于处理大型强子对撞机LHC的实验数据和验证实验模型,目前已处理EB级别的实验数据。然而直接使用cling并不必要,因为cling自身的代码已经达到了3万行以上,其中大部分代码是为了适配物理实验领域的需求。此外cling对Clang和LLVM进行了较大的修改,并未合并到LLVM主线,这将需要大量的后续维护投入。参考cling的实现思路,借助于Clang和LLVM这两个强大的工具,我们只需编写很少的代码(几百行)就能实现功能丰富的C/C++解释器。
后文将依次具体探讨实现C/C++引擎使用到的Clang前端技术。
LLVM(Low-Level Virtual Machine)是一个编译器开发工具集,和虚拟机(Virtual Machine)没任何关系。
LLVM主要包括如下工具和库:一个源语言无关,目标架构无关的编译优化器,一个目标架构无关代码生成器,C/C++编译器Clang,LLDB调试器,LLD连接器,libc++库等,其中编译优化器和代码生成器是LLVM的核心。
为什么需要LLVM?LLVM解决了什么问题?
传统的结构是三段式,由前端,优化器,后端组成,并且紧耦合,如果新实现一个编程语言或者新增一个指令集ISA,都需要重新实现这三段,而且优化器不独立,程序优化即需要考虑语言特征,又需要考虑机器特性,难以专注优化算法本身。
LLVM将传统的三段式结构中优化阶段单独提取出来,并引入了一个通用的代码中间表示LLVM IR,这样前端研发人员只需要关注Source Code到LLVM IR的过程,专注前端的相关的算法 如新的parser算法和语义检查;而编译优化研发人员只需要专注优化算法的开发,因为中间表示LLVM IR和源代码无关,指令集架构ISA无关。后端研发只需要专注适配新的ISA,优化代码生成框架,优化指令选择,指令调度,寄存器分配等后端算法。大家术业有专攻,极大的繁荣了LLVM 生态。
如果需要研发新的编程语言,例如研发Rust语言,只需要研发语言的前端,就可以适配所有ISA。如果需要增加新的ISA,例如新指令集架构RISC-V, 只需要采用LLVM Target-Independent Code Generator 开发一个新的后端,RISC-V后端就可以支持所有的语言。如果需要新增新的编译优化算法,只需往Common Optimizer加入新算法,不需要了解语言特征,也不需要了解架构特性。
Clang是LLVM项目中一个C家族语言编译前端, 支持C, C++, Objective C/C++, OpenCL, CUDA等的编译,Clang的设计之初就注重模块化,各个子模块都提供了库,能基于这些库实现一些非常多个工具,如常用的C++代码linter工具clang-tidy 代码补全工具clangd,Clang的报错提示也非常的友好,这两方面相对GCC都有巨大的优势。
日常我们使用Clang包含两方面含义:Clang驱动器和Clang前端,后续将分别介绍这两方面内容,并重点讨论Clang前端。
日常使用的Clang工具就是一个驱动器,驱动整个编译的流水线,将C/C++编译成二进制,如下图Clang驱动Clang编译前端Frontend,汇编器Assembler, 连接器Linker等。
以一个例子说明
int factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n - 1);
}
factorial.cpp
使用-ccc-print-phases打印各个阶段的内容,如下图编译文件factorial.cpp需要0~5总共6个阶段,0输入C++文件,1预处理,2编译预处理后的代码输出中间表示IR(Intermediate Representation), 3然后从IR生成汇编代码,4汇编器将汇编代码转成二进制目标代码,5链接器将目标代码链接成二进制。
$clang -ccc-print-phases factorial.cpp
0: input, "factorial.cpp", c++
1: preprocessor, {0}, c++-cpp-output
2: compiler, {1}, ir
3: backend, {2}, assembler
4: assembler, {3}, object
5: linker, {4}, image
发现实际过程中Clang Driver会将各个阶段进行合并, 例如前5个阶段合并到clang-16程序执行,最后的链接ld单独执行。
$clang -### factorial.cpp
clang version 16.0.0
"/usr/local/bin/clang-16" "-cc1" "-emit-obj" "-x" "c++" "factorial.cpp" ...
"/usr/bin/ld" "--eh-frame-hdr" "-m" "elf_x86_64" "-o" "a.out" ...
clang_main是Clang Driver主函数,定义在文件tools/driver/driver.cpp 中,如果我们分析Clang的执行流程,会发现有下面的调用栈
ExecutionAction字面意思是执行一个Action,什么是Action呢?
Action是一个编译步骤,对应Clang Driver流水线中的阶段,可参考Clang文档
整个Clang Driver流水线按从Action角度来看如下:
上图的调用栈中cc1_main调用ExectueAction一个FrontendAction,FrontendAction代表Clang前端相关的阶段,下面介绍。
Clang前端是Driver的一部分也是编译的核心,Clang前端负责将输入的C/C++代码编译成中间表示IR(Intermediate Representation)
前端包括预处理/词法解析,语法解析,语义检查,代码生成子模块,Clang提供了命令行选项查看各阶段的输出内容:
预处理Preprocessor和Lexer是组合一起的,Lexer输入C/C++源文件,输出Token流,查看Lexer的输出:
输出的Token包括类型和值, "factorial"的类型是identifier,值为"factorial";左括号类型是l_paren,值是'('。最右边Loc显示了Token在文件中的位置,其中"factorial"在第1行第5列。
Token定义在文件include/clang/Basic/TokenKinds.def 中
文件include/clang/Parse/Parser.h 中函数ConsumeToken和TryConsumeToken读取Token并前进到下一个Token:
Clang手写了一个递归下降的语法解析器,没有使用Bison等自动化Parser Generator工具等生成,原因是C++语法复杂,难以写成LALR形式,而且LALR Parser的编译报错信息不友好,这里有进行相关的讨论 the LALR grammar for C++。
"C++ grammar is ambiguous, context-dependent and potentially requires infinite lookahead to resolve some ambiguities"
要了解语法分析的过程,就需要先了解语法的规则,以下图右侧代码说明,首先每个文件由一系列的申明Decl(Declaration)组成;这份代码包含2个声明:VarDecl变量声明和FunctionDecl函数声明,分别对应变量c和函数factorial;函数由参数列表和函数体组成,参数声明ParmValDecl对应参数int n,CompoundStmt组合语句就是对应函数factorial的函数体;函数体由一些列的声明Decl(Declaration)和语句Stmt(Statement)组成,factorial的函数体包含一个ValDecl变量声明,IfStmt if语句,ReturnStmt 返回语句,ValDecl变量声明对应局部变量 int k, 返回语句对应 最后的return,if语句则包含条件表达式语句CondStmt,True分支语句ThenStmt,False分支语句ElseStmt,因为代码中没有else语句块,所以图中未给出ElseStmt,显然if语句的条件表达式语句CondStmt对应n <= 1,True分支语句ThenStmt对应 return 1,这里还能继续往下分解语法规则,不再给出。
了解语法规则后,分析下语法解析的过程,下图展示了右侧代码的Parse过程,以解析其中 n <= 1为例输出函数调用栈Call Stack
C++语法是知名的复杂...语言标准也是非常的厚...好在Clang代码结构比较清晰,可以对有兴趣的部分跟踪调试,这里只展示了冰山一角,还不到一角。
语义检查包括变量或过程未经声明就使用、变量或过程名重复声明、运算分量类型不匹配、操作符与操作数之间的类型不匹配。
Clang的语义检查与一般方法不同,常规方案方法是在生成抽象语法树AST之后,遍历AST进行检查。而Clang在AST节点生成过程中即时检查语义。语法分析Parser完成语句检查后,只表示语法正确,语义的正确性还需要检查,如操作符要求的操作数类型是否符合。
还是以if条件表达式 n <= 1为例,前一节语法分析的调用栈最后调用到了ParseRHSOfBinaryExpression函数,成功解析了表达式的RHS(Right Hand Side),这时候n <= 1的语法已经正确匹配,在准备构建抽象语法树AST前,先进入Sema模块进行语义检查,Parser和Sema之间的接口一般是ActOn,如图中的ActOnBinop,Sema模块的结构如下图,首先从语义角度检查程序正确性,n <= 1表达式需要左右操作数(n 和 1)类型都是Arithmetic Type,即char/bool/int/long等等。函数CheckMultiplyDivideOperands执行这样的检查,如果操作数类型不正确,将调用InvalidOperands,该函数进一步调用辅助函数Diag, Diag处理报错信息(error, warning, note),本节后续还会解析展开。如果语义正确,最后为这个Binary Expresion创建抽象语法树。
总结Sema模块的工作,如果语义检查不通过,就输出报错信息,通过就输出AST。
Clang Diagnose子系统用于处理和发生各种诊断信息给开发者。Diagnose子系统的调用来源主要是Sema模块,Sema通过辅助函数Diag 生成报错信息(Emit a diagnostic)。
下图中 编译这段有问题的代码,Clang输出报错信息。
信息主要由3部分组成:位置信息,如factorial.cpp:1:1 文件第1行第1列。严重等级: error, warning, note,图中是error,内容:*unknown type name 'intt’。
诊断类型在文件include/clang/Basic/DiagnosticSemaKinds.td 中定义,上图unknown type name的定义如下:
Sema模块通过DiagnoseUnkownTypename函数(定义在lib/Sema/SemaDecl.cpp )发送err_unknown_typename类型的诊断信息,使用的是辅助函数Diag。
Sema模块生成抽象语法树 AST (Abstract Syntax Tree)。和C/C++ 源代码相比,Clang AST 是更方便分析和操作的程序表示形式,同时 AST 节点还有源代码行列数等属性。AST结构也可轻易地转换回源代码,因此Clang AST特别适合用于进行静态代码分析、代码重构等工作,方便在C/C++源代码层级上进行分析和修改。
实际的代码产生的 AST结构非常复杂,我们可以先有个整体印象。
上图文件的AST结构如下:
从上图中可以看到,factorial.cpp文件整个内容称为是翻译单元TranslationUnitDecl, 文件只包含一个函数声明FunctionDecl,函数声明由参数声明ParmVarDecl和函数体语句CompoundStmt组成,函数体包括一个if语句IfStmt和返回语句ReturnStmt。
Clang AST中节点的类型主要是Decl(声明), Stmt(语句) 和 Type(类型), 以及它们的子类。
使用Clang的-ast-dump查看输出的AST的详细结构
clang -c -Xclang -ast-dump factorial.cpp
输出如下:
源代码对应的AST结构如图:
怎么访问/遍历/修改AST,如何基于Clang AST实现有趣的工具和功能呢,后面介绍基于Clang开始时展开。
CodeGen模块使用AST visitors以访问者模式(Visitor Pattern)遍历AST,然后使用IRBuilder类构建中间表示LLVM IR输出。
以构建if语句条件表达式 n <= 1的LLVM IR为例, CodeGen调用栈Call Stack如下:
使用Clang的-emit-llvm选项,可以查看输出的LLVM IR
clang -S -emit-llvm factorial.cpp
后文将详细介绍CodeGen输出的LLVM IR结构
Clang设计之初就被设计为一系列库。通过这一系列库,开发者可以实现各种各样强大的功能,玩转编程语言,本章介绍如何基于这些库做开发。
在探索Clang的过程中,本人收集和开发了一些Clang开发用例llvm-example,主要是AST的遍历和修改,可以通过GitHub获取代码,编译和运行。
执行下面的命令,使用-emit-llvm选项编译一个cpp文件到LLVM IR,Clang内部使用了哪些类和数据结构呢,执行流程是怎样的,如果我们想在这个编译流程上加上自定义的内容呢?
clang -S -emit-llvm factorial.cpp
Clang的编译流程和数据结构设计,给开发这预留了大量的重写和自定义Hook的地方,下图展示了从cpp代码到LLVM IR的内部流程。
CompilerInstance类抽象Clang编译器,它描述了一个编译器的方方面面,包含了预处理Preprocessor,ASTContext(抽象语法树类),诊断类DiagnosticsEngine等等。编译器CompilerInstance对象使用ExecuteAction执行具体的前端动作FrontendAction,FrontendAction是前端动作的抽象类,开发者可以重写FrontendAction类的函数,执行自定义的操作。
如果执行的是如下命令,Clang编译器具体执行的是EmitLLVMOnlyAction,上图可以看到它和FrontendAction的继承关系。
clang -S -emit-llvm factorial.cpp
EmitLLVMOnlyAction如它的名字含义一样,只输出LLVM IR,FrontendAction还有其他的子类实现,包括EmitAssemblyAction,Clang具体执行哪个由编译参数决定,参见代码lib/Frontend/CompilerInvocation.cpp 。
如果需要自定义实现FrontendAction,可以继承该类,并重写它的几个函数,实现需要的逻辑。
示例中clang-funcnames实现了自定义的MyFrontendAction。
ASTConsumer类是读取抽象语法树AST的基础类,也预留了大量函数给开发者进行重写,Clang里ASTConsumer也有多种子类实现如下图
使用-emit-llvm输出LLVM IR时, Clang使用的是BackendConusmer读取AST,同样如果自定义AST处理逻辑,可以重新它的如下等函数
示例中clang-funcnames实现了自定义的MyASTConsumer。
RecursiveASTVisitor访问处理具体AST节点的基础类,ASTConsumer使用它访问具体的语法树节点,它们之间的关系如下:
RecursiveASTVisitor提供了一些列处理AST节点的函数,如访问表达式VisitDecl和访问声明VisitDecl,都是可重写的函数:
示例中clang-funcnames实现了自定义的MyASTVisitor:
总结下一下,如果使用Clang进行静态代码分析、代码重构等AST遍历和编辑工作,主要涉及的基础类是FrontendAction,ASTConsumer和RecursiveASTVisitor,这三个类非常的庞大,Clang文档给出了这些类的详细结构。这几个类的交互和基本使用方法可参考本人开发收集的Clang开发用例llvm-example。
写在最后
重新引用上图,实现特征计算引擎有多种方案可选,但没有一种方案能解决所有问题,每种方案都有各自的优劣。考虑到微信后台主要使用C/C++语言,因此采用C/C++语言的WebAssembly方案和类C/C++语言的DSL是不错的选择,结合Python和Lua完全能满足业务需求。本文通过探索C/C++解释执行,提出了一种基于Clang/LLVM的方案,具有高性能且能与微信C/C++基建良好兼容,值得进一步研究。
参考资料:
本文由微信公众号腾讯技术工程原创,哈喽比特收录。
文章来源:https://mp.weixin.qq.com/s/AQ3M7pFr8EaU9PhkfXEJqg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。