面试必备:四种经典限流算法讲解

捡田螺的小男孩 发表于 10月以前  | 总阅读数:615 次

前言

大家好,我是田螺。

最近一位朋友去拼夕夕面试,被问了这么一道题:限流算法有哪些?用代码实现令牌桶算法。跟星球好友讨论了一波,发现大家都忘记得差不多了.所以田螺哥再整理一波,常见的四种限流算法,以及简单代码实现,相信大家看完,会茅塞顿开的。

  1. 固定窗口限流算法

1.1 什么是固定窗口限流算法

固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求。

假设单位时间(固定时间窗口)是1秒,限流阀值为3。在单位时间1秒内,每来一个请求,计数器就加1,如果计数器累加的次数超过限流阀值3,后续的请求全部拒绝。等到1s结束后,计数器清0,重新开始计数。如下图:

1.2 固定窗口限流的伪代码

 public static Integer counter = 0;  //统计请求数
   public static long lastAcquireTime =  0L;
   public static final Long windowUnit = 1000L ; //假设固定时间窗口是1000ms
   public static final Integer threshold = 10; // 窗口阀值是10

    /**
     * 固定窗口时间算法
     * 关注公众号:捡田螺的小男孩
     * @return
     */
    public synchronized boolean fixedWindowsTryAcquire() {
        long currentTime = System.currentTimeMillis();  //获取系统当前时间
        if (currentTime - lastAcquireTime > windowUnit) {  //检查是否在时间窗口内
            counter = 0;  // 计数器清0
            lastAcquireTime = currentTime;  //开启新的时间窗口
        }
        if (counter < threshold) {  // 小于阀值
            counter++;  //计数统计器加1
            return true;
        }

        return false;
    }

1.2 固定窗口算法的优缺点

  • 优点:固定窗口算法非常简单,易于实现和理解。
  • 缺点:存在明显的临界问题,比如: 假设限流阀值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前0.8-1s1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阀值的定义啦。

  1. 滑动窗口限流算法

2.1 什么是滑动窗口限流算法

滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题

用一张图解释滑动窗口算法,如下:

假设单位时间还是1s,滑动窗口算法把它划分为5个小周期,也就是滑动窗口(单位时间)被划分为5个小格子。每格表示0.2s。每过0.2s,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1

我们来看下,滑动窗口,去解决固定窗口限流算法的临界问题,思想是怎样

假设我们1s内的限流阀值还是5个请求,0.8~1.0s内(比如0.9s的时候)来了5个请求,落在黄色格子里。时间过了1.0s这个点之后,又来5个请求,落在紫色格子里。如果是固定窗口算法,是不会被限流的,但是滑动窗口的话,每过一个小周期,它会右移一个小格。过了1.0s这个点后,会右移一小格,当前的单位时间段是0.2~1.2s,这个区域的请求已经超过限定的5了,已触发限流啦,实际上,紫色格子的请求都被拒绝啦。

当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确

2.2 滑动窗口限流算法的伪代码实现

 /**
     * 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)
     */
    private int SUB_CYCLE = 10;

    /**
     * 每分钟限流请求数
     */
    private int thresholdPerMin = 100;

    /**
     * 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数
     */
    private final TreeMap<Long, Integer> counters = new TreeMap<>();

   /**
     * 滑动窗口时间算法实现
     */
     public synchronized boolean slidingWindowsTryAcquire() {
        long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口
        int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数

        //超过阀值限流
        if (currentWindowNum >= thresholdPerMin) {
            return false;
        }

        //计数器+1
        counters.get(currentWindowTime)++;
        return true;
    }

   /**
    * 统计当前窗口的请求数
    */
    private int countCurrentWindow(long currentWindowTime) {
        //计算窗口开始位置
        long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);
        int count = 0;

        //遍历存储的计数器
        Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry<Long, Integer> entry = iterator.next();
            // 删除无效过期的子窗口计数器
            if (entry.getKey() < startTime) {
                iterator.remove();
            } else {
                //累加当前窗口的所有计数器之和
                count =count + entry.getValue();
            }
        }
        return count;
    }

2.3 滑动窗口限流算法的优缺点

优点

  • 简单易懂
  • 精度高(通过调整时间窗口的大小来实现不同的限流效果)
  • 可扩展性强(可以非常容易地与其他限流算法结合使用)

缺点

  • 突发流量无法处理(无法应对短时间内的大量请求,但是一旦到达限流后,请求都会直接暴力被拒绝。酱紫我们会损失一部分请求,这其实对于产品来说,并不太友好),需要合理调整时间窗口大小。
  1. 漏桶限流算法

3.1 什么是漏桶限流算法

漏桶限流算法(Leaky Bucket Algorithm)是一种流量控制算法,用于控制流入网络的数据速率,以防止网络拥塞。它的思想是将数据包看作是水滴,漏桶看作是一个固定容量的水桶,数据包像水滴一样从桶的顶部流入桶中,并通过桶底的一个小孔以一定的速度流出,从而限制了数据包的流量。

漏桶限流算法的基本工作原理是:对于每个到来的数据包,都将其加入到漏桶中,并检查漏桶中当前的水量是否超过了漏桶的容量。如果超过了容量,就将多余的数据包丢弃。如果漏桶中还有水,就以一定的速率从桶底输出数据包,保证输出的速率不超过预设的速率,从而达到限流的目的。

  • 流入的水滴,可以看作是访问系统的请求,这个流入速率是不确定的。
  • 桶的容量一般表示系统所能处理的请求数。
  • 如果桶的容量满了,就达到限流的阀值,就会丢弃水滴(拒绝请求)
  • 流出的水滴,是恒定过滤的,对应服务按照固定的速率处理请求。

3.2 漏桶限流算法的伪代码实现

 /**
 * LeakyBucket 类表示一个漏桶,
 * 包含了桶的容量和漏桶出水速率等参数,
 * 以及当前桶中的水量和上次漏水时间戳等状态。
 */
public class LeakyBucket {
    private final long capacity;    // 桶的容量
    private final long rate;        // 漏桶出水速率
    private long water;             // 当前桶中的水量
    private long lastLeakTimestamp; // 上次漏水时间戳

    public LeakyBucket(long capacity, long rate) {
        this.capacity = capacity;
        this.rate = rate;
        this.water = 0;
        this.lastLeakTimestamp = System.currentTimeMillis();
    }

    /**
     * tryConsume() 方法用于尝试向桶中放入一定量的水,如果桶中还有足够的空间,则返回 true,否则返回 false。
     * @param waterRequested
     * @return
     */
    public synchronized boolean tryConsume(long waterRequested) {
        leak();
        if (water + waterRequested <= capacity) {
            water += waterRequested;
            return true;
        } else {
            return false;
        }
    }

    /**
     * 。leak() 方法用于漏水,根据当前时间和上次漏水时间戳计算出应该漏出的水量,然后更新桶中的水量和漏水时间戳等状态。
     */
    private void leak() {
        long now = System.currentTimeMillis();
        long elapsedTime = now - lastLeakTimestamp;
        long leakedWater = elapsedTime * rate / 1000;
        if (leakedWater > 0) {
            water = Math.max(0, water - leakedWater);
            lastLeakTimestamp = now;
        }
    }
}
  • 注意: tryConsume()leak()方法中,都需要对桶的状态进行同步,以保证线程安全性。

3.3 漏桶限流算法的优缺点

优点

  • 可以平滑限制请求的处理速度,避免瞬间请求过多导致系统崩溃或者雪崩。
  • 可以控制请求的处理速度,使得系统可以适应不同的流量需求,避免过载或者过度闲置。
  • 可以通过调整桶的大小和漏出速率来满足不同的限流需求,可以灵活地适应不同的场景。

缺点

  • 需要对请求进行缓存,会增加服务器的内存消耗。
  • 对于流量波动比较大的场景,需要较为灵活的参数配置才能达到较好的效果。
  • 但是面对突发流量的时候,漏桶算法还是循规蹈矩地处理请求,这不是我们想看到的啦。流量变突发时,我们肯定希望系统尽量快点处理请求,提升用户体验嘛。
  1. 令牌桶算法

4.1 什么是令牌桶算法

令牌桶算法是一种常用的限流算法,可以用于限制单位时间内请求的数量。该算法维护一个固定容量的令牌桶,每秒钟会向令牌桶中放入一定数量的令牌。当有请求到来时,如果令牌桶中有足够的令牌,则请求被允许通过并从令牌桶中消耗一个令牌,否则请求被拒绝。

4.2 令牌桶算法的伪代码实现

/**
 * TokenBucket 类表示一个令牌桶
 */
public class TokenBucket {

    private final int capacity;     // 令牌桶容量
    private final int rate;         // 令牌生成速率,单位:令牌/秒
    private int tokens;             // 当前令牌数量
    private long lastRefillTimestamp;  // 上次令牌生成时间戳

    /**
     * 构造函数中传入令牌桶的容量和令牌生成速率。
     * @param capacity
     * @param rate
     */
    public TokenBucket(int capacity, int rate) {
        this.capacity = capacity;
        this.rate = rate;
        this.tokens = capacity;
        this.lastRefillTimestamp = System.currentTimeMillis();
    }

    /**
     * allowRequest() 方法表示一个请求是否允许通过,该方法使用 synchronized 关键字进行同步,以保证线程安全。
     * @return
     */
    public synchronized boolean allowRequest() {
        refill();
        if (tokens > 0) {
            tokens--;
            return true;
        } else {
            return false;
        }
    }

    /**
     * refill() 方法用于生成令牌,其中计算令牌数量的逻辑是按照令牌生成速率每秒钟生成一定数量的令牌,
     * tokens 变量表示当前令牌数量,
     * lastRefillTimestamp 变量表示上次令牌生成的时间戳。
     */
    private void refill() {
        long now = System.currentTimeMillis();
        if (now > lastRefillTimestamp) {
            int generatedTokens = (int) ((now - lastRefillTimestamp) / 1000 * rate);
            tokens = Math.min(tokens + generatedTokens, capacity);
            lastRefillTimestamp = now;
        }
    }
}

4.3 令牌桶算法的优缺点

优点:

  • 稳定性高:令牌桶算法可以控制请求的处理速度,可以使系统的负载变得稳定。
  • 精度高:令牌桶算法可以根据实际情况动态调整生成令牌的速率,可以实现较高精度的限流。
  • 弹性好:令牌桶算法可以处理突发流量,可以在短时间内提供更多的处理能力,以处理突发流量。

GuavaRateLimiter限流组件,就是基于令牌桶算法实现的。

缺点:

  • 实现复杂:相对于固定窗口算法等其他限流算法,令牌桶算法的实现较为复杂。对短时请求难以处理:在短时间内有大量请求到来时,可能会导致令牌桶中的令牌被快速消耗完,从而限流。这种情况下,可以考虑使用漏桶算法。
  • 时间精度要求高:令牌桶算法需要在固定的时间间隔内生成令牌,因此要求时间精度较高,如果系统时间不准确,可能会导致限流效果不理想。

总体来说,令牌桶算法具有较高的稳定性和精度,但实现相对复杂,适用于对稳定性和精度要求较高的场景。

本文由微信公众号捡田螺的小男孩原创,哈喽比特收录。
文章来源:https://mp.weixin.qq.com/s/t10vlYneEbgI0VA3xYR0gg

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录