大模型RAG入门及实践

奇舞精选 发表于 7月以前  | 总阅读数:746 次

前言在大语言模型(LLM)飞速发展的今天,LLMs 正不断地充实和改进我们周边的各种工具和应用。如果说现在基于 LLM 最火热的应用技术是什么,检索增强生成(RAG,Retrieval Augmented Generation)技术必占据重要的一席。RAG 最初是为了解决 LLM 的各类问题的产生的,但后面大家发现在现阶段的很多企业痛点上,使用RAG好像是更好的解决方案。在介绍 RAG 之前,我们先来看一下现在LLM存在的问题。

LLM的问题

尽管LLM拥有令人印象深刻的能力,但是它们还面临着一些问题和挑战:

  • 幻觉问题:大模型的底层原理是基于概率,在没有答案的情况下经常会胡说八道,提供虚假信息。
  • 时效性问题:规模越大(参数越多、tokens 越多),大模型训练的成本越高。类似 ChatGPT3.5,起初训练数据是截止到 2021 年的,对于之后的事情就不知道了。而且对于一些高时效性的事情,大模型更加无能为力,比如帮我看看今天晚上有什么电影值得去看?这种任务是需要去淘票票、猫眼等网站先去获取最新电影信息的,大模型本身无法完成这个任务。
  • 数据安全:OpenAI 已经遭到过几次隐私数据的投诉,而对于企业来说,如果把自己的经营数据、合同文件等机密文件和数据上传到互联网上的大模型,那想想都可怕。既要保证安全,又要借助 AI 能力,那么最好的方式就是把数据全部放在本地,企业数据的业务计算全部在本地完成。而在线的大模型仅仅完成一个归纳的功能,甚至,LLM 都可以完全本地化部署。

解决这些挑战对于 LLMs 在各个领域的有效利用至关重要。一个有效的解决方案是集成检索增强生成(RAG)技术,该技术通过获取外部数据来响应查询来补充模型,从而确保更准确和最新的输出。主要表现方面如下:

  • 有效避免幻觉问题:虽然无法 100% 解决大模型的幻觉问题,但通过 RAG 技术能够有效的降低幻觉,在软件系统中结合大模型提供幂等的API接口就可以发挥大模型的重要作用。
  • 经济高效的处理知识&开箱即用:只需要借助信息检索和向量技术,将用户的问题和知识库进行相关性搜索结合,就能高效的提供大模型不知道的知识,同时具有权威性
  • 数据安全:企业的数据可以得到有效的保护,通过私有化部署基于 RAG 系统开发的AI产品,能够在体验AI带来的便利性的同时,又能避免企业隐私数据的泄漏。

上图展示了 RAG 如何使 ChatGPT 能够提供超出其初始训练数据的精确答案。

什么是RAG

说了这么多,下面我们来介绍一下什么是 RAG 。

RAG 是检索增强生成(Retrieval Augmented Generation )的简称,它为大语言模型 (LLMs) 提供了从数据源检索信息的能力,并以此为基础生成回答。简而言之,RAG 结合了信息检索技术和大语言模型的提示功能,即模型根据搜索算法找到的信息作为上下文来查询回答问题。无论是查询还是检索的上下文,都会被整合到发给大语言模型的提示中。

RAG 的架构如图中所示。它既不是一个特定的开源代码库,也不是某个特定的应用,是一个开发框架。

完整的 RAG 应用流程主要包含两个阶段:

  • 数据准备阶段:(A)数据提取--> (B)分块(Chunking)--> (C)向量化(embedding)--> (D)数据入库
  • 检索生成阶段:(1)问题向量化--> (2)根据问题查询匹配数据--> (3)获取索引数据 --> (4)将数据注入Prompt--> (5)LLM生成答案

下面让我们展开介绍一下这两个阶段的关键环节。

数据准备阶段

数据准备一般是一个离线的过程,主要是将私有数据向量化后构建索引并存入数据库的过程。主要包括:数据提取、文本分割、向量化、数据入库等环节。

1、数据提取:将 PDF、word、markdown、数据库和API等多种格式的数据,进行过滤、压缩、格式化等处理为同一个范式。

2、分块(Chunking):将初始文档分割成一定大小的块,尽量不要失去语义含义。将文本分割成句子或段落,而不是将单个句子分成多部分。有多种文本分割器实现能够完成此任务。比如根据换行、句号、问号、感叹号等切分文本,或者以其他的合适大小的 chunk 为原则进行分割。最终将语料分割成 chunk 块,在检索时会取相关性最高的 top_n。

3、向量化(embedding):将文本数据转化为向量矩阵的过程,该过程会直接影响到后续检索的效果。常用的 embedding 模型:moka-ai/m3e-base、GanymedeNil/text2vec-large-chinese,也可以参考 Hugging Face 推出的嵌入模型排行榜 MTEB Leaderboard。

4、数据入库:数据向量化后构建索引,并写入向量数据库的过程可以概述为数据入库,适用于 RAG 场景的向量数据库包括:facebookresearch/faiss(本地)、Chroma、Elasticsearch、Milvus 等。一般可以根据业务场景、硬件、性能需求等多因素综合考虑,选择合适的数据库。

应用阶段

在应用阶段,根据用户的提问,将提问问题向量化处理,然后通过高效的检索方法,从向量数据库中召回与提问最相关的知识,并融入 Prompt;大模型参考当前提问和相关知识,生成相应的答案。关键环节包括:数据检索、注入 Prompt 等。

1、数据检索

常见的数据检索方法包括:相似性检索、全文检索等。以及可以结合多种检索方式,提升召回率。

  • 相似性检索:即计算查询向量与所有存储向量的相似性得分,返回得分高的记录。常见的相似性计算方法包括:余弦相似性、欧氏距离、曼哈顿距离等。
  • 全文检索:全文检索是一种比较经典的检索方式,在数据存入时,通过关键词构建倒排索引;在检索时,通过关键词进行全文检索,找到对应的记录。

RAG 文本检索环节中的主流方法是相似性检索(向量检索),即语义相关度匹配的方式。想了解更多检索方式和检索的优化请查看文章,综述等文章。

2、注入 Prompt

Prompt 作为大模型的直接输入,是影响模型输出准确率的关键因素之一。在 RAG 场景中,Prompt 一般包括任务描述、背景知识(检索得到)、任务指令(一般是用户提问)等,根据任务场景和大模型性能,也可以在 Prompt 中适当加入其他指令优化大模型的输出。一个简单知识问答场景的 Prompt 如下所示:

prompt = f"""
  Give the answer to the user query delimited by triple backticks ```{query}```\
  using the information given in context delimited by triple backticks ```{context}```.\
  If there is no relevant information in the provided context, try to answer yourself,
  but tell user that you did not have any relevant context to base your answer on.
  Be concise and output the answer of size less than 80 tokens.
"""

Prompt 的设计只有方法、没有语法,比较依赖于个人经验,在实际应用过程中,往往需要根据大模型的实际输出进行针对性的 Prompt 调优。

实践示例

那具体 RAG 怎么做呢?我们用一个简单的 LangChain 代码示例来展示 RAG 的使用。

环境准备

安装相关依赖

# 环境准备,安装相关依赖
pip install langchain sentence_transformers chromadb

本地数据加载

这个例子使用了保罗·格雷厄姆(Paul Graham)的文章"What I Worked On"的文本。下载文本后,放置到"./data"目录下。Langchain 提供了很多文件加载器,包括 word、csv、PDF、GoogleDrive、Youtube等,使用方法也很简单。这里直接使用 TextLoader 加载txt文本。

from langchain.document_loaders import TextLoader

loader = TextLoader("./data/paul_graham_essay.txt")
documents = loader.load()

文档分割(split_documents)

文档分割,借助 langchain 的字符分割器。代码中我们指定 chunk_size=500, chunk_overlap=10, 这样的意思就是我们每块的文档中是 500 个字符,chunk_overlap 表示字符重复的个数,这样可以避免语义被拆分后不完整。

# 文档分割
from langchain.text_splitter import CharacterTextSplitter

# 创建拆分器
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=10)
# 拆分文档
documents = text_splitter.split_documents(documents)

向量化(embedding)

接下来对分割后的数据进行 embedding,并写入数据库。LangChain提供了许多嵌入模型的接口,例如 OpenAICohereHugging FaceWeaviate等,请参考 LangChain 官网。这里选用 m3e-base 作为 embedding 模型,向量数据库选用 Chroma。

from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import Chroma

# embedding model: m3e-base
model_name = "moka-ai/m3e-base"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
embedding = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

数据入库

将嵌入后的结果存储在 VectorDB 中,常见的 VectorDB包括 ChromaweaviateFAISS等,这里使用 Chroma 来实现。ChromaLangChain 整合得很好,可以直接使用 LangChain 的接口进行操作。

# 指定 persist_directory 将会把嵌入存储到磁盘上。
persist_directory = 'db'
db = Chroma.from_documents(documents, embedding, persist_directory=persist_directory)

检索(Retrieve)

向量数据库被填充后,可以将其定义为检索器组件,该组件根据用户查询与嵌入式块之间的语义相似性获取附加上下文。

retriever = db.as_retriever()

增强(Augment)

接下来,为了将附加上下文与提示一起使用,需要准备一个提示模板。如下所示,可以轻松地从提示模板自定义提示。

from langchain.prompts import ChatPromptTemplate

template = """You are an assistant for question-answering tasks. 
Use the following pieces of retrieved context to answer the question. 
If you don't know the answer, just say that you don't know. 
Use three sentences maximum and keep the answer concise.
Question: {question} 
Context: {context} 
Answer:
"""
prompt = ChatPromptTemplate.from_template(template)

生成(Generate)

最后,可以构建一个 RAG 流水线的链,将检索器、提示模板和LLM连接在一起。一旦定义了 RAG 链,就可以调用它。本地通过 ollama 运行的 llama3 来作为 LLM 使用。如果不了解本地ollama部署模型的流程,可以参考这篇文章。

from langchain_community.chat_models import ChatOllama
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser

llm = ChatOllama(model='llama3')

rag_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
)

query = "What did the author do growing up?"
response = rag_chain.invoke(query)
print(response)

我这里的本地llama3环境下,输出为:

Before college, Paul Graham worked on writing and programming outside of school. He didn't write essays, but instead focused on writing short stories. His stories were not very good, having little plot and just characters with strong feelings.

从这个输出中,可以看到已经将我们提供的文本中的相关信息检索出来,并由 LLM 总结回答我们的问题了。

RAG 与微调

上面都是介绍的 RAG ,在这里顺便对比一下微调(Fine-tuning)。在大语言模型的优化措施中, RAG 和微调都是一种重要的技术。

可以把 RAG 想象成给模型提供一本参考书,让它根据问题去查找信息然后回答问题。这种方法适用于模型需要解答具体问题或执行特定信息检索任务的情况。但 RAG 并不适合于教会模型理解广泛的领域或学习新的语言、格式或风格。

而微调更像是让学生通过广泛学习来吸收知识。当模型需要模仿特定的结构、风格或格式时,微调就显得非常有用。它可以提高未经微调的模型的表现,使交互更加高效。

微调特别适用于强化模型已有的知识、调整或定制模型的输出,以及给模型下达复杂的指令。然而,微调并不适合于向模型中添加新的知识,或者在需要快速迭代新场景的情况下使用。

RAG 和微调可以相互补充,而非相互排斥,从而在不同层次上增强模型的能力。在特定情况下,结合这两种方法可以达到模型性能的最佳状态。

还有一个形象的对比来介绍 RAG 和微调, RAG 就相当于是开卷考试,考试的时候可以翻书, 可以随时翻到某一页来查找对应的知识点去回答。微调相当于你一整个学期的学习,并在考试前进行了重点复习和记忆,考试时,凭借自己巩固的知识去答题。

总结

本文列举了LLM的问题。简单介绍了什么是 RAG ,以及 RAG 的流程。最后使用了一个简单的LangChain代码示例来展示 RAG 的使用。最后对比了 RAG 和微调的区别,方便大家选型。

参考:

  • https://www.cnblogs.com/xiaoymin/p/18109964
  • https://luxiangdong.com/2023/09/25/ragone/
  • https://baoyu.io/translations/ai-paper/2312.10997-retrieval-augmented-generation-for-large-language-models-a-survey
  • https://juejin.cn/post/7329824954109722659
  • https://arxiv.org/html/2404.10981v1
  • https://arxiv.org/html/2402.19473v3
  • https://lmy.medium.com/comparing-langchain-and-llamaindex-with-4-tasks-2970140edf33
  • https://blog.csdn.net/csdn1561168266/article/details/136503636

本文由微信公众号奇舞精选原创,哈喽比特收录。
文章来源:https://mp.weixin.qq.com/s/9cgu8uEyP77gpvptknxu9w

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
为Electron程序添加运行时日志 5年以前  |  20423次阅读
Node.js下通过配置host访问URL 5年以前  |  5915次阅读
用 esbuild 让你的构建压缩性能翻倍 4年以前  |  5818次阅读
 目录