python解析网页,无出BeautifulSoup左右,此是序言
安装
BeautifulSoup4以后的安装需要用eazy_install,如果不需要最新的功能,安装版本3就够了,千万别以为老版本就怎么怎么不好,想当初也是千万人在用的啊。安装很简单
复制代码 代码如下:
$ wget "http://www.crummy.com/software/BeautifulSoup/download/3.x/BeautifulSoup-3.2.1.tar.gz"
$ tar zxvf BeautifulSoup-3.2.1.tar.gz
然后把里面的BeautifulSoup.py这个文件放到你python安装目录下的site-packages目录下
site-packages是存放Python第三方包的地方,至于这个目录在什么地方呢,每个系统不一样,可以用下面的方式找一下,基本上都能找到
复制代码 代码如下:
$ sudo find / -name "site-packages" -maxdepth 5 -type d
$ find ~ -name "site-packages" -maxdepth 5
当然如果没有root权限就查找当前用户的根目录
复制代码 代码如下:
$ find ~ -name "site-packages" -maxdepth 5 -type d
如果你用的是Mac,哈哈,你有福了,我可以直接告诉你,Mac的这个目录在/Library/Python/下,这个下面可能会有多个版本的目录,没关系,放在最新的一个版本下的site-packages就行了。使用之前先import一下
复制代码 代码如下:
from BeautifulSoup import BeautifulSoup
使用
在使用之前我们先来看一个实例
现在给你这样一个页面
复制代码 代码如下:
http://movie.douban.com/tag/%E5%96%9C%E5%89%A7
它是豆瓣电影分类下的喜剧电影,如果让你找出里面评分最高的100部,该怎么做呢
好了,我先晒一下我做的,鉴于本人在CSS方面处于小白阶段以及天生没有美术细菌,界面做的也就将就能看下,别吐
接下来我们开始学习BeautifulSoup的一些基本方法,做出上面那个页面就易如反掌了
鉴于豆瓣那个页面比较复杂,我们先以一个简单样例来举例,假设我们处理如下的网页代码
复制代码 代码如下:
This is paragraph one .
This is paragraph two .
你没看错,这就是官方文档里的一个样例,如果你有耐心,看官方文档就足够了,后面的你都不用看
http://www.leeon.me/upload/other/beautifulsoup-documentation-zh.html
初始化
首先将上面的HTML代码赋给一个变量html如下,为了方便大家复制这里贴的是不带回车的,上面带回车的代码可以让大家看清楚HTML结构
复制代码 代码如下:
html = '
This is paragraphone.
This is paragraphtwo.
'初始化如下:
复制代码 代码如下:
soup = BeautifulSoup(html)
我们知道HTML代码可以看成一棵树,这个操作等于是把HTML代码解析成一种树型的数据结构并存储在soup中,注意这个数据结构的根节点不是,而是soup,其中html标签是soup的唯一子节点,不信你试试下面的操作
复制代码 代码如下:
print soup
print soup.contents[0]
print soup.contents[1]
前两个输出结果是一致的,就是整个html文档,第三条输出报错IndexError: list index out of range
查找节点
查找节点有两种反回形式,一种是返回单个节点,一种是返回节点list,对应的查找函数分别为find和findAll
单个节点
1.根据节点名
复制代码 代码如下:
print soup.find('head') ## 输出为
这种方式查找到的是待查找节点最近的节点,比如这里待查找节点是soup,这里找到的是离soup最近的一个head(如果有多个的话)
2.根据属性
复制代码 代码如下:
print soup.find(attrs={'id':'firstpara'})
This is paragraphone.
print soup.find('p', attrs={'id':'firstpara'}) ## 输出同上
3.根据节点关系
节点关系无非就是兄弟节点,父子节点这样的
复制代码 代码如下:
p1 = soup.find(attrs={'id':'firstpara'}) ## 得到第一个p节点
print p1.nextSibling ## 下一个兄弟节点
This is paragraphtwo.
p2 = soup.find(attrs={'id':'secondpara'}) ## 得到第二个p节点
print p2.previousSibling ## 上一个兄弟节点
This is paragraphone.
print p2.parent ## 父节点,输出太长这里省略部分
...多个节点
将上面介绍的find改为findAll即可返回查找到的节点列表,所需参数都是一致的
1.根据节点名
复制代码 代码如下:
soup.findAll('p')
2.根据属性查找
复制代码 代码如下:
soup.findAll(attrs={'id':'firstpara'})
需要注意的是,虽然在这个例子中只找到一个节点,但返回的仍是一个列表对象
上面的这些基本查找功能已经可以应付大多数情况,如果需要各个高级的查找,比如正则式,可以去看官方文档
获取文本
getText方法可以获取节点下的所有文本,其中可以传递一个字符参数,用来分割每个各节点之间的文本
复制代码 代码如下:
soup.head.getText() ## u'Page title'
soup.head.text
soup.body.getText('\n') ## u'This is paragraph\none\n.\nThis is paragraph\ntwo\n.'
实战
有了这些功能,文章开头给出的那个Demo就好做了,我们再来回顾下豆瓣的这个页面
http://movie.douban.com/tag/%E5%96%9C%E5%89%A7
如果要得到评分前100的所有电影,对这个页面需要提取两个信息:1、翻页链接;2、每部电影的信息(外链,图片,评分、简介、标题等)
当我们提取到所有电影的信息后再按评分进行排序,选出最高的即可,这里贴出翻页提取和电影信息提取的代码
复制代码 代码如下:
from BeautifulSoup import BeautifulSoup, Tag
import urllib2
import re
from Log import LOG
def LOG(argv):
sys.stderr.write(argv)
sys.stderr.write('\n')
class Grab():
url = ''
soup = None
def GetPage(self, url):
if url.find('http://',0,7) != 0:
url = 'http://' + url
self.url = url
LOG('input url is: %s' % self.url)
req = urllib2.Request(url, headers={'User-Agent' : "Magic Browser"})
try:
page = urllib2.urlopen(req)
except:
return
return page.read()
def ExtractInfo(self,buf):
if not self.soup:
try:
self.soup = BeautifulSoup(buf)
except:
LOG('soup failed in ExtractInfo :%s' % self.url)
return
try:
items = self.soup.findAll(attrs={'class':'item'})
except:
LOG('failed on find items:%s' % self.url)
return
links = []
objs = []
titles = []
scores = []
comments = []
intros = []
for item in items:
try:
pic = item.find(attrs={'class':'nbg'})
link = pic['href']
obj = pic.img['src']
info = item.find(attrs={'class':'pl2'})
title = re.sub('[ \t]+',' ',info.a.getText().replace(' ','').replace('\n',''))
star = info.find(attrs={'class':'star clearfix'})
score = star.find(attrs={'class':'rating_nums'}).getText().replace(' ','')
comment = star.find(attrs={'class':'pl'}).getText().replace(' ','')
intro = info.find(attrs={'class':'pl'}).getText().replace(' ','')
except Exception,e:
LOG('process error in ExtractInfo: %s' % self.url)
continue
links.append(link)
objs.append(obj)
titles.append(title)
scores.append(score)
comments.append(comment)
intros.append(intro)
return(links, objs, titles, scores, comments, intros)
def ExtractPageTurning(self,buf):
links = set([])
if not self.soup:
try:
self.soup = BeautifulSoup(buf)
except:
LOG('soup failed in ExtractPageTurning:%s' % self.url)
return
try:
pageturning = self.soup.find(attrs={'class':'paginator'})
a_nodes = pageturning.findAll('a')
for a_node in a_nodes:
href = a_node['href']
if href.find('http://',0,7) == -1:
href = self.url.split('?')[0] + href
links.add(href)
except:
LOG('get pageturning failed in ExtractPageTurning:%s' % self.url)
return links
def Destroy(self):
del self.soup
self.soup = None
接着我们再来写个测试样例
复制代码 代码如下:
from Grab import Grab
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
grab = Grab()
buf = grab.GetPage('http://movie.douban.com/tag/喜剧?start=160&type;=T')
if not buf:
print 'GetPage failed!'
sys.exit()
links, objs, titles, scores, comments, intros = grab.ExtractInfo(buf)
for link, obj, title, score, comment, intro in zip(links, objs, titles, scores, comments, intros):
print link+'\t'+obj+'\t'+title+'\t'+score+'\t'+comment+'\t'+intro
pageturning = grab.ExtractPageTurning(buf)
for link in pageturning:
print link
grab.Destroy()
OK,完成这一步接下来的事儿就自个看着办吧
本文只是介绍了BeautifulSoup的皮毛而已,目的是为了让大家快速学会一些基本要领,想当初我要用什么功能都是去BeautifulSoup的源代码里一个函数一个函数看然后才会的,一把辛酸泪啊,所以希望后来者能够通过更便捷的方式去掌握一些基本功能,也不枉我一字一句敲出这篇文章,尤其是这些代码的排版,真是伤透了脑筋
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。