在Python中使用NLTK库实现对词干的提取的教程

发表于 5年以前  | 总阅读数:1515 次

什么是词干提取?

在语言形态学和信息检索里,词干提取是去除词缀得到词根的过程─―得到单词最一般的写法。对于一个词的形态词根,词干并不需要完全相同;相关的词映射到同一个词干一般能得到满意的结果,即使该词干不是词的有效根。从1968年开始在计算机科学领域出现了词干提取的相应算法。很多搜索引擎在处理词汇时,对同义词采用相同的词干作为查询拓展,该过程叫做归并。

一个面向英语的词干提取器,例如,要识别字符串"cats"、"catlike"和"catty"是基于词根"cat";"stemmer"、"stemming"和"stemmed"是基于词根"stem"。一根词干提取算法可以简化词 "fishing"、"fished"、"fish"和"fisher" 为同一个词根"fish"。
技术方案的选择

Python和R是数据分析的两种主要语言;相对于R,Python更适合有大量编程背景的数据分析初学者,尤其是已经掌握Python语言的程序员。所以我们选择了Python和NLTK库(Natual Language Tookit)作为文本处理的基础框架。此外,我们还需要一个数据展示工具;对于一个数据分析师来说,数据库的冗繁安装、连接、建表等操作实在是不适合进行快速的数据分析,所以我们使用Pandas作为结构化数据和分析工具。
环境搭建

我们使用的是Mac OS X,已预装Python 2.7.

安装NLTK


    sudo pip install nltk

安装Pandas


    sudo pip install pandas

对于数据分析来说,最重要的是分析结果,iPython notebook是必备的一款利器,它的作用在于可以保存代码的执行结果,例如数据表格,下一次打开时无需重新运行即可查看。

安装iPython notebook


    sudo pip install ipython

创建一个工作目录,在工作目录下启动iPython notebook,服务器会开启http://127.0.0.1:8080页面,并将创建的代码文档保存在工作目录之下。


    mkdir Codes
    cd Codes
    ipython notebook

文本处理

数据表创建

使用Pandas创建数据表 我们使用得到的样本数据,建立DataFrame――Pandas中一个支持行、列的2D数据结构。


    from pandas import DataFrame
    import pandas as pd
    d = ['pets insurance','pets insure','pet insurance','pet insur','pet insurance"','pet insu']
    df = DataFrame(d)
    df.columns = ['Words']
    df

显示结果

201548161158999.jpg \(303×307\)

NLTK分词器介绍

RegexpTokenizer:正则表达式分词器,使用正则表达式对文本进行处理,就不多作介绍。
PorterStemmer:波特词干算法分词器,原理可看这里:http://snowball.tartarus.org/algorithms/english/stemmer.html
第一步,我们创建一个去除标点符号等特殊字符的正则表达式分词器:


    import nltk
    tokenizer = nltk.RegexpTokenizer(r'w+')

接下来,对准备好的数据表进行处理,添加词干将要写入的列,以及统计列,预设默认值为1:


    df["Stemming Words"] = ""
    df["Count"] = 1

读取数据表中的Words列,使用波特词干提取器取得词干:


    j = 0
    while (j <= 5):
      for word in tokenizer.tokenize(df["Words"][j]):
        df["Stemming Words"][j] = df["Stemming Words"][j] + " " + nltk.PorterStemmer().stem_word(word)
      j += 1
    df

Good!到这一步,我们已经基本上实现了文本处理,结果显示如下:

201548161224388.jpg \(747×299\)

分组统计

在Pandas中进行分组统计,将统计表格保存到一个新的DataFrame结构uniqueWords中:


    uniqueWords = df.groupby(['Stemming Words'], as_index = False).sum().sort(['Count'])
    uniqueWords

201548161257262.jpg \(718×127\)

注意到了吗?依然还有一个pet insu未能成功处理。

拼写检查

对于用户拼写错误的词语,我们首先想到的是拼写检查,针对Python我们可以使用enchant:


    sudo pip install enchant

使用enchant进行拼写错误检查,得到推荐词:


    import enchant
    from nltk.metrics import edit_distance
    class SpellingReplacer(object):
      def __init__(self, dict_name='en', max_dist=2):
        self.spell_dict = enchant.Dict(dict_name)
        self.max_dist = 2
      def replace(self, word):
        if self.spell_dict.check(word):
          return word
        suggestions = self.spell_dict.suggest(word)
        if suggestions and edit_distance(word, suggestions[0]) <=
          self.max_dist:
          return suggestions[0]
        else:
          return word

    from replacers import SpellingReplacer
    replacer = SpellingReplacer()
    replacer.replace('insu')

    'insu'

但是,结果依然不是我们预期的"insur"。能不能换种思路呢?
算法特殊性

用户输入非常重要的特殊性来自于行业和使用场景。采取通用的英语大词典来进行拼写检查,无疑是行不通的,并且某些词语恰恰是拼写正确,但本来却应该是另一个词。但是,我们如何把这些背景信息和数据分析关联起来呢?

经过一番思考,我认为最重要的参考库恰恰就在已有的数据分析结果中,我们回来看看:

201548161325135.jpg \(724×132\)

已有的5个"pet insur",其实就已经给我们提供了一份数据参考,我们已经可以对这份数据进行聚类,进一步除噪。

相似度计算

对已有的结果进行相似度计算,将满足最小偏差的数据归类到相似集中:


    import Levenshtein
    minDistance = 0.8
    distance = -1
    lastWord = ""
    j = 0
    while (j < 1):
       lastWord = uniqueWords["Stemming Words"][j]
       distance = Levenshtein.ratio(uniqueWords["Stemming Words"][j], uniqueWords["Stemming Words"][j + 1])
       if (distance > minDistance):
        uniqueWords["Stemming Words"][j] = uniqueWords["Stemming Words"][j + 1]
      j += 1
    uniqueWords

查看结果,已经匹配成功!

201548161441655.jpg \(689×144\)

最后一步,重新对数据结果进行分组统计:


    uniqueWords = uniqueWords.groupby(['Stemming Words'], as_index = False).sum()
    uniqueWords

到此,我们已经完成了初步的文本处理。

201548161529041.jpg \(643×103\)

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237279次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8114次阅读
 目录