RFC3093_防火墙增进协议 (FEP)

发表于 6年以前  | 总阅读数:842 次
组织:中国互动出版网(http://www.china-pub.com)
RFC文档中文翻译计划(http://www.china-pub.com/compters/emook/aboutemook.htm)
E-mail:ouyang@china-pub.com
译者:王晨光(taucho  taucho@yeah.net )
译文发布时间:2001-5-8
版权:本中文翻译文档版权归中国互动出版网所有。可以用于非商业用途自由转载,但必
须保留本文档的翻译及版权信息。
 

网络工作组      编者:D.Oran
请求评议文档:1142  数字设备公司
       1990,2月

OSI IS-IS 域内路由协议
(RFC1142 OSI IS-IS Intra-domain Routing Protocol)


本备忘录的状态

    这个RFC(Internet标准(草案))是ISO DP(ISO国际标准化组织,DP数据处理,建议草
案?)10589 的再版,用于互联网通讯服务。这不是一个互联网标准,此备忘录的发布是无
限制的。

注意:这个文档不是ASCII文本,官方文档是PostScript文件,包含图表。请使用这个备忘录的PostScript
文本。
    

ISO/IEC DIS 10589 (IEC 国际电工委员会)

信息技术——系统间的远程通讯和信息交换——中间系统到中间系统的用于连
接在无连接方式网络服务(ISO 8473)下协议的域内路由交换协议。

目录

1 应用领域和范围
2 参考
3 定义
4 符号和缩写
5 印刷排版协定
6 协议的概述
7 子网独立功能
8 子网相互功能
9 PDU(协议数据单元)编码和结构
10 系统环境
11 系统管理
12 一致
附件A PICS(协议实现一致性声明)格式
附件B 技术支持材料
附件C 执行方针和例子
附件D 拥塞控制和避免



简介:
    本协议是一系列用来推动开放系统互连的国际标准之一。此一系列标准包括了完成这种
互连所必须的服务和协议。此协议的定位考虑到了其他相关的标准——在ISO 7498中定义的
层和在ISO 8648中定义的结构。特别指出,本协议是网络层上的协议。此协议允许路由领域
的中间系统之间交换配置和路由信息,从而促进了网络层上的选定路线和信息传播功能。本
协议被设计为用来紧密连接ISO 9542和ISO 8473。其中,ISO 9542被用来建立个人子网的
终端系统和中间系统之间的连通和互达,ISO 8473传送数据。用于路径计算和维护的相关算
法也同时被描述。域内IS-IS路由协议被设计为支持那些由多种子网组成的大型路由区域。
子网包括点到点连接,多点连接,X.25子网和广播通信子网例如ISO 8802局域网。为了支
持这种大型路由区域,作为域内路线选定的规定被设计为具有多层性。每一种系统存在于一
种特定的区域。在同一区域中的路径称为Level 1 路径。在不同区域间的路径称为Level 2 路
径。Level 2 的中间系统保持着路径到目的区域的轨迹。Level 1 的中间系统保持着在自己
区域中路径的轨迹。因为一个NPDU设计为另一个区域,当一个Level 1 中间系统发送NPDU
到最近的Level 2中时,是在自己的区域中,不管这个区域是如何定义的。这样,NPDU经过
Level 2路径到达目的区域,在此它在一次通过Level 1路径到达目标终端系统。


信息技术——系统间的远程通讯和信息交换——中间系统到中间系统的用于连
接在无连接方式网络服务(ISO 8473)下协议的域内路由交换协议。

1  应用领域和范围

    此国际标准制定了一个协议,网络层应用该协议在中间系统中操作ISO 8473来维护路径
信息,从而能够在单路径领域中发送信息。该协议在此被描述为相关于一个无连接模式的基
本服务的规定。要想了解这种基于ISO 8208,ISO 8802和OSI 数据连接服务的子网服务,详
见 ISO 8473 及其附录3。

标准指定:

a)用来传送结构和存在于单路径领域中间系统的网络实体之间的路径信息的过程;

b)协议数据单元编码用于传送结构和路径信息;

c)用来正确解释协议控制信息的过程;

d)函数满足标准要求。


过程定义:

a)位于中间系统的网络实体的交互作用通过协议数据单元的交换;

b)位于网络实体和一基本服务提供者之间的交互作用通过原始子网服务的交换;

c)当每个中间系统都有一个与其它系统相容的路径信息基础时,路径决定必须被所有中间
系统观察到。

2 参考

2.1 标准参考

    下列标准包含了一些规定,通过在本文中涉及,这些规定成为国际标准。在出版的同时,
版本说明也同时有效。所有标准都可被修改,而且那些基于国际标准的协议的各方都被鼓励
从事对最新标准版本应用的可行性的研究。IEC和ISO的成员保持当前有效的国际标准的纪
录。

ISO 7498:1984,信息处理系统,开放系统互连基本参考模型。
ISO 7498/Add.1:1984, 信息处理系统,开放系统互连基本参考模型附录1:无连接方式传送。
ISO 7498-3:1989, 信息处理系统,开放系统互连基本参考模型部分3:命名和寻址。
ISO 7498-4:1989, 信息处理系统,开放系统互连基本参考模型部分4:管理结构。
ISO 8348:1987, 信息处理系统,数据通信网络服务定义。
ISO 8348/Add.1:1987,信息处理系统,数据通信网络服务定义附录1:无连接方式传送。
ISO 8348/Add.2:1988, 信息处理系统,数据通信网络服务定义附录2:网络层寻址。
ISO 8473:1988, 信息处理系统,在无连接方式网络服务下的数据通信协议。
ISO 8473/Add.3:1989, 信息处理系统,远程通讯和系统间数据交换,在无连接方式网络服务
下的协议 附录3:ISO 8473中假设的提供OSI数据连接服务的子网上的基本服务的规定。
ISO 8648:1988, 信息处理系统,开放系统互连,网络层内部组织。
ISO 9542:1988, 信息处理系统,终端系统到中间系统的远程通信和信息交换,用于连接在无
连接方式网络服务(ISO 8473)下协议的路由交换协议。
ISO 8208:1984, 信息处理系统,数据通信X.25信息包级别协议用于数据终端设备。
ISO 8802:1988, 信息处理系统,局域网系统间远程通信和信息交换。
ISO/TR 9575:1989, 信息技术,OSI路径结构系统的远程通信和信息交换。
ISO/TR 9577:1990, 信息技术,网络层协议鉴定系统的远程通信和信息交换。
ISO/IEC DIS 10165-4:, 信息技术,开放系统互连,管理信息的管理信息服务结构部分4:
被管理目标的定义方针。
ISO/IEC 10039:1990, IPS-T&IEBS  MAC 服务定义。

2.2 其他参考

下列参考在一些路径算法规则的描述中是有帮助的:

McQuillan, J. et. al.,  The New Routeing Algorithm for the ARPANET,IEEE Transactions 
on Communications, May 1980.

Perlman, Radia, Fault-Tolerant Broadcast of Routeing Information, Computer Networks, 
Dec. 1983. Also in IEEE INFOCOM 83, April 1983.

Perlman, Radia, Fault-Tolerant Broadcast of Routeing Information, Computer Networks, 
Dec.1983. Also in IEEE INFOCOM 83, April 1983.

Aho, Hopcroft, and Ullman, Data Structures and Algorithms, P204208  Dijkstra 
algorithm.

3 定义

3.1 参考模型定义

此国际标准使用在下列在ISO 7498中的定义:
a)网络层
b)网络服务访问点
c)网络服务访问点地址
d)网络实体
e)路径
f)网络协议
g)网络传播
h)网络协议数据单元

3.2 网络层体系定义

此国际标准使用在下列在ISO 8648中的定义:
a)子网络
b)终端系统
c)中间系统
d)子网服务
e)子网访问协议
f)子网相关的集中协议
g)子网独立的集中协议

3.3 网络层寻址定义

此国际标准使用在下列在ISO 8348/Ass.2中的定义:
a)子网地址
b)子网连接点
c)网络实体标题

3.4 局域网定义

此国际标准使用在下列在ISO 8802中的定义:
a)多目标地址
b)媒体访问控制
c)广播媒体

3.5 路径结构定义

此国际标准使用在下列在ISO/TR 9575中的定义:
a)管理域
b)路径域
c)转发
d)黑洞

3.6 附加定义

此国际标准使用下列定义:

3.6.1 区域:一个路径子域保持关于它内部成分的详细路径信息,同时也保持使它到达其
他路径子域的路径信息。它符合Level 1子域。

3.6.2 邻居:一个邻近的系统可以通过一个PDU遍历一个单一子网到达。

3.6.3 相邻:一个本地路径信息的一部分,在一单一邻居ES或IS上流程一周可以达到。
相邻被用作一种输入到通过路径域形成通路的决定处理中去。一个单独的相邻应用于
在一流程上的每个邻居,每个在广播流程上的路径Level(也就是Level 1和Level 2)。

3.6.4 流程:与一单一本地SNPA相关的本地路径信息的子集。

3.6.5 链路:两个邻居间的通信通道。当两个SNPA间有可能通信时链路向上。

3.6.6 指定的IS:中间系统在一个被指定完成附加任务的局域网上。特别是为了局域网的
利益它 产生连接状态PDU,把局域网视为一个伪网点。

3.6.7 伪网点(Pseudonode):当一个广播子网拥有n个连接着的中间系统,这个广播子
网自身被视为一个伪网点。该伪网点包含所有n个中间系统的每个连接,并且每个
IS拥有一个单一连接到伪网点(而不是n-1个连接到每个其他中间系统中去)。为了
伪网点的利益连接状态PDU被被指定的IS所产生。这一点在图1中被描述。
 
   图   1

3.6.8 广播子网:一个支持任意数量的终端系统和中间系统的子网,并且可以发送一个单
一的SNPDU到这些系统的子集中,从而响应单一SN_UNITDATA的请求。

3.6.9 普通布局子网:一个支持任意数量的终端系统和中间系统的子网,但是不像广播子
网一样支 持方便的多目的无连接发送设备。

3.6.10 路径子域:一系列位于相同路径域的终端系统和中间系统。

3.6.11 Level 2子域:所有路径域Level 2中间系统中的一系列系统。

4 符号和缩写

4.1 数据单元
PDU 协议数据单元
SNSDU 子网服务数据单元
NSDU 网络服务数据单元
NPDU 网络协议数据单元
SNPDU 子网协议数据单元

4.2 协议数据单元
ESH PDU ISO 9542  终端系统呼叫协议数据单元
ISH PDU ISO 9542  中间系统呼叫协议数据单元
RD PDU ISO 9542  重定向协议数据单元
IIH 中间系统到中间系统呼叫协议数据单元
LSP 连接状态协议数据单元
SNP 数字序列协议数据单元
CSNP 完全数字序列协议数据单元
PSNP 部分数字序列协议数据单元




4.3 寻址
AFI 权威的格式化的指示器
DSP 特殊部分领域
IDI 初始域标识符
IDP 初始域部分
NET 网络实体名称
NSAP 网络服务访问节点
SNPA 子网连接节点

4.4 其他
DA 动态分配
DED 动态建立数据连接
DTE 数据终端设备
ES 终端系统
IS 中间系统
L1 Level 1
L2 Level 2
LAN 局域网
MAC 媒体访问控制
NLPID 网络层协议标识符
PCI 协议控制信息
QoS 服务质量
SN 子网
SNAcP 子网访问协议
SNDCP 子网相关性集中协议
SNICP 子网独立性集中协议
SRM 发送路径消息
SSN 发送数字序列消息
SVC 转变虚流程

5 印刷排版协定
此国际标准应用于下列印刷协定:
a)当重要的术语和概念被第一次引用时用斜体字;
b)协议常量和管理参量用滑体字(将多种字符混合),首字母小写,以后第一次出现大写;
c)协议领域名称用San Serif体(下划线)所有字符大写;
d)常量、参数和协议领域的值用双引号括起。



6 协议的概述

6.1 系统类型

包含下列类型:

终端系统:该系统发送NPDU到其他系统中并且从其他系统接受NPDU,但是并不传播NPDU.
该国际标准未超出ISO 8473和ISO 9542所指定的终端系统功能范围。

Level 1中间系统:该系统发送NPDU到其他系统中并且从其他系统接受NPDU,传播NPDU
从其他源头系统到其他目的系统。此系统直接发送NPDU到本区域系统中,当目标系统位于
别的区域则发送到一个Level 2中间系统中去。

Level 2中间系统:该系统作为Level 1中间系统和由Level 2 IS组成的子域中的系统。
位于Level 2子域中的系统向目的方向传送,或者向另一路径域方向。

6.2 子网类型

支持以下两种普通子网类型:

a)广播子网:多存取子网具有寻址某一单一NPDU附属的一组系统的能力,例如ISO 8802.3
局域网。

b)普通布局子网:以一种点到点方式的连接两个系统。

以下是几种普通方式布局子网:
1)多点连接:多于两个系统的连接,其中有一主系统,其余系统为第二(或从属)系
统。主系统可以与其他所有第二系统直接通信,但是第二系统不能直接与其他系统
通信。
2)永久的点到点连接:所有时刻都保持的连接(除非被破坏,或被系统管理关掉),例
如专用线或私人连接。
3)动态建立数据连接(DEDs):跳过导向设备连接的连接,例如X.25,X.21, ISDN, or 
PSTN networks。

动态建立数据连接可被用于以下两种方式:
i)静态点到点(Static):访问建立在系统管理动作之上,并且只能清除在系统管理
动作之(或失败)。
ii)动态指定(DA):访问建立在通报接受之上,当空闲超时时被取消。建立访问的地
址被到达的NPDU信息所动态决定。在一个DA流程上的IS之间不存在IS-IS传送
PDU。
    
    子网独立函数对待所有子网类型就像对待无连接子网一样,使用ISO 8473中子网相关的
集中函数,在此必须提供一个无连接子网服务。然而,此子网相关的函数在无连接和面向连
接的子网中操作是不同的。

6.3 布局

    一个单一的结构可能希望将其管理域分为若干独立的路径域。这样做是有其优点的,就
像ISO/TR 9575中所描述的。此外,这样对域内路由协议帮助域间路由协议(为了连接多管
理域而存在的协议)运行也是有益的。
为了使此种多域布局更加容易,对进入静态域内路径信息制订了规定。位于IS的拥有跨
过路径域边界的连接的系统管理使信息进入,这些信息被Reachable Address Prefixes(可
到达地址前缀)提供。此前缀指示了任何一个NSAP,当其地址与该前缀相匹配时,此NSAP
可能经过与该前缀相关的SNPA被达到。在SNPA被连接的子网是一普通布局子网支持动态建
立数据连接处,该前缀同时也与同它需要的子网寻址信息相连接,或者与一个可从目标NSAP
地址中获得的指示相连接(例如,某X.121 DTE地址有时能从NSAP地址的IDI中获得)。
地址前缀被Level 2路径算法以与本域内Level 1信息相同的方式处理。NPDU和一个与
所有域内Level 2中间系统所呈现的前缀相匹配的目标地址在一起,所以可以被此IS传播(使
用Level 2路径)并且可被传送出该区域(假设其他区域的路径功能可以传输NPDU到它的目
的地)。

6.4 地址

    在一个路径区域中遵守此标准,中间系统的网络实体则可以被构成,如7.1.1所描述的。
    所有的系统都应当能够以各种被ISO 8348/Add.2所指定的格式产生和发送包含NSAP地
址的数据PDU。然而,终端系统的NSAP地址应当以7.1.1中描述的方式构成,从而充分利用
IS-IS路径。在这样一个区域中仍然会有些终端系统具有不符合7.1.1的地址,特别当它们
遇到了更普遍的ISO 8348/Add.2需求,但是它们可以要求附加的配置并且受制于下级路径性
能。

6.5 功能结构

域内IS-IS路径功能可分为以下两组:

--子网独立功能(Subnetwork Independent Functions)

--子网相关功能(Subnetwork Dependent Functions)

6.5.1 子网独立功能

    子网独立功能支持在一对邻居系统间的全双工NPDU传送。它们独立于特定的子网或在它
们之下的数据连接服务操作,除了认可以下两种子网:

-普通布局子网,包含点到点的HDLC(高级数据链路控制),多点HDLC和动态建立数据连
接(如X.25,X.21和  PSTN连接)
-广播子网,包含ISO 8802局域网。

以下子网独立功能是被标识的:

-路径选择,路径选择功能决定NPDU路径。一个路径是连接系统的顺序,是源头ES和目
标ES之间的链路。有关路径域中所有中间系统的所有网络实体的知识的集合被用来确定
路径的存在,并发送NPDU到它的目的地。中间系统的路径选择的成分有以下特定的功能:
1>它摘录并解释了一个NPDU中的路径PCI。
2>它基于目的地址执行了NPDU传送。
3>它管理路径的特征。当一系统或链接在路径中失败时,它寻找一替换的路径。
4>它与子网相关功能对接从而收到关于一已失效SNPA、或一失败系统、或一SNPA或者
系统后来的恢复的报告。
5>当传送功能不能传播NPDU时它通知ISO 8473错误报告运行,例如当目的地不能到达
时或当NPDU需要被分割但它被要求无分段时。
-拥塞控制,拥塞控制管理每个中间系统所使用的资源。



6.5.2 子网相关功能
   子网相关功能掩盖了从子网独立功能获得的子网或数据链路服务的特性,它包括:
- 在特殊子网上,运用ISO 9542的中介系统功能以实现:
1. 决定邻居网络实体名称和SNPA地址
2. 决定运行中的中介系统的SNPA
- 实现在ISO 8473及其附录3中定义的必不可少的子网决定集中功能以实现:
1. 数据链接初始化
2. 7Hop by hop fragmentation over subnetworks with small maximum SNSDU 
sizes
   3. 建立和清除动态数据链接
 


6.6 设计目标
本国际标准支持以下设计要求:(与ISO/TR 9575中的 OSI路由规定一致的将注明)
- 网络层协议兼容性。兼容ISO 8473和ISO 9542。(参见ISO/TR 9575的第7.5节)
- 简单终端系统:不需要改变终端系统,也不需要超出ISO 8473和ISO 9575支持的
     功能。(参见ISO/TR 9575的第7.2.1节)
- 多重组织结构(Multiple Organisations):允许多路径和根据域边界提供的静态路由
信息管理的域。(参见ISO/TR 9575的第7.3节)
- 传递性(Deliverability)。接收和传递地址可达的NPDUs使其到达目的地,拒绝地址
    不可达的NPDUs。
- 适应性。可适应域内的拓扑变化,但对通信量的变化不适应,除非获知本地队列长度
    把通信量负荷分配到若干相同的路径。(参见ISO/TR 9575的第7.7节)
- 灵活性。对域内拓扑结构变化的适应周期理所当然是域直径(即域内终端系统间的
最大逻辑距离(logical distance))和数据链接速度的函数。(参见ISO/TR 9575的
第7.7节)
- 效率。包括处理和存储的效率。它不产生额外的通信量开销。(参见ISO/TR 9575的
第7.4节)
- 健壮性。它可从例如PDUs丢失或临时出错的的暂时错误中恢复,还可以容忍不精确的
参数设置。(参见ISO/TR 9575的第7.7节)
- 稳定性。在没有连续的拓扑变化和数据库讹误发生的情况下它在有限时间内对良好的
路由保持稳定。
- 系统管理控制(System Management control)。系统管理能控制许多经参数变换的路
由函数(routeing functions)并检查参数,计数器和路线,然而,它的正确操作
(correct behaviour)不会依赖于系统管理行为。
- 简易性(Simplicity) 。它十分易于进行调整和实现故障隔离(failure isolation)。
- 可维护性。具有检测,隔离和修复大多数可能影响路由运算和数据库的普通错误的
机制。(参见ISO/TR 9575的第7.8节)
- 非均匀性(Heterogeneity)。它工作在包容各种网络和系统类型的环境下,有各种
通讯技术和拓扑结构。能在各种各样的子网中工作,包括但不限于:ISO 8802局域
ISO 8208和X.25子网,PSTN网络以及OSI数据链路服务。(参见ISO/TR 9575的
第7.1节)
- 可扩展性(Extensibility)。提供增强的路由功能,把原功能作为一个子集。
- 发展(Evolution)。允许在不关闭整个域的情况下实现算法的有序转换。 
— 死锁预防。拥塞控制部件可防止缓存死锁。
— 大面积域(Very Large Domains)。由于采用分层路由和非常大的地址空间,它将支持
无限大的域。(参见ISO/TR 9575的第7.2节)
- 面积分割修补(Area Partition Repair)。允许应用第2层路径来修补由于第一层
链接或ISs失败而被分割的面积。(参见ISO/TR 9575的第7.7节)
- 确定性(Determinism)。路线是物理拓扑而不是历史记录的函数。也就是说,同样的
拓扑结构总能得到同样的路径。
- 误传输保护(Protection from Mis-delivery )。须使误传输一个NPDU的概率尽量低,
例如,把一个NPDU送到错误的ES。


- 实用性(Availability)。因为在分割点大于一的域拓扑逻辑中,不会有一个单独的
错误点来分割这个域。(参见ISO/TR 9575的第7.7节) 
- 服务等级(Service Classes)。传输延迟的服务等级 代价与ISO 8473 相同  后一个
术语常用来表明根据任一路由规则计算的路径代价,因此,为避免可能的混淆此处避
免用它。,且其包含任意的多路由规则,故而支持ISO 8473的剩余错误概率。
The service classes of transit delay, expense22Expense is referred to as
cost in ISO 8473. The latter term is not used here because of possible 
confusion with the more general usage of the term to indicate path cost 
according to any routeing metric.
 , and residual error probability of ISO 8473 are supported through the 
optional inclusion of multiple routeing metrics.

- 鉴定(Authentication)。本协议能传送中介系统的鉴定信息,以提高路由域的安全性
和健壮性。然而,此国际标准支持的这种特殊机制,指支持一种较弱的密码鉴定形式
而这只对偶然的意外错误有保护作用,而不能防止任何严重的安全威胁。将来,算法
可能会提供比密码保护更强大的鉴定形式,而无须改变PDU编码或协议交换机。
 

6.6.1非目标(Non-Goals)
以下内容不在本国际标准描述的域内ISIS路由协议的设计范围之内:
- 通信量适应(Traffic adaptation):不能根据通信负担自动修正路由。 
- 源—目的路由:不能根据源或目的决定路由。
- 有保障传输(Guaranteed delivery):不能确保传输所有的NPDUs。
- 第2层子域分割修复(Level 2 Subdomain Partition Repair):不能利用第一层路径
修复第2子层分割。为使整个域完全逻辑连通可达,需要一个连通的第2层子域
- 对所有ES设备同等对待:8.4.5中定义的ES选择函数假定ES已实现了ISO 9542建
议的ES配置定时器选项(Suggested ES Configuration Timer option of ISO 9542)。
  一个没有实现以上配置的ES可能会在其本地子网的拓扑结构类型改变时,暂时
丢失连接。


6.7 环境要求(Environmental Requirements)
为了协议的正确运行,本地环境和数据链路层需要特定的保障。
所需环境的保障有:
a)  资源分配以保证某最小资源可获得,包括:
1) 内存(编码,数据和缓存);
2) 处理(processing). 所需性能水平的细节参见12.2.5;
b)  分配的缓存数量足够完成路由功能;
c)  有权使用定时器或通知特定定时器终止;
d)  数据破坏的可能性极低。



点对点连接所必须的子网保障是:
a)  规定在PDU交换前,源和目的端系统完成启动;  
b)  侦测远程启动;
c)  规定启动完成后接收不到旧的PDUs;
d)  规定在一次特殊的启动完成后传送的PDUs都要按时序传送;
e)  规定一个特殊子网的SDU传送失败将导致及时地断开与其的双向连接,且此失败
    将报告给双方系统;
f)  报告其它子网的失败和下级子网的情况(degraded subnetwork conditions)。

    广播链路所需的子网保障是:
a)  多点传输能力,即根据单一PDU寻址所有连接系统的子集的能力
b)  以下事件是小概率事件,也就是说它们的发生的可能性是如此之小,每一千个
PDUs才会发生一次,以至于不会对性能产生影响:
1) 路由PDU不连续;
2) 由于检查到讹误而丢失路由PDU
3) 接收溢出
c) 以下事件是微小概率事件,也就是说除非它们出现的概率小于四年一次,否则
性能将受到很大的影响。
1) 传送带有未被检测出的错误数据的NPDUs;
2) 无对象连接(Non-transitive connectivity),即系统A可以接收系统B
和C,但系统B不能接收系统C

以下服务被假定不能从广播链路获得:
a) 失败情况和导致NPDU丢失的下级子网情况的报告,例如接收失败。路由功能将
解决这些失败。

6.8 子网独立元件的功能结构
(Functional Organisation of Subnetwork 
Independent Components)
子网独立功能分为许多特殊的功能块。本小节将简要地描述这些功能块,而第7章将
详细地就此展开论述。本国际标准采用5.1节介绍的ISO/TR 9575路由模型的功能分解。
由于后者更为普遍且不象本协议一样是面向域内路由功能的细节描述的,因此两者的功能
分解不完全相同。功能分解见于图2。

6.8.1 路由(Routeing)
    路由过程为:
- 决定过程(Decision Process)
- 更新过程(Update Process)
注意  这包括在ISO/TR 9575中定义的信息收集和发布组件。


- 转发过程(Forwarding Process)
- 接收过程(Receive Process)

6.8.1.1 决定过程
 此过程计算到域内每一个目的地地路径。它对第1层和第2路由分别执行且对中介
系统支持地路由算法在每一层内分别执行。它使用链接状态数据库,来计算从本IS到域
内所有其它系统的最短路径,链接状态数据库是由域内其他中介系统发出的链接状态PDUs
的信息组成的。(如图2中的9) 链接状态数据库由更新过程维护。决定过程的执行产生
[电路,邻居]对(即所知的邻域(adjacencies)),它们存储在转发信息库中,用于转发
NPDUs的转发过程。
决定过程使用的路由数据库的几个参数由此设备(the implementation)决定。
这些参数包括:
- IS区域内中介系统和终端系统的最大数量
- IS邻居中介系统和终端系统的最大数量,等等,以使数据库的大小合适。
 还有如下参数:
- 每一线路的路由算法(routeing metrics for each circuit);
- 定时器(timers),可用于改善性能。系统可设置的全部参数列在第11节

6.8.1.2 更新过程
 此过程建立,接收和传播链接状态PDUs。每个链接状态PDUs包括的信息有:产生
链路状态PDU的IS的邻域的身份和路由运算结果(routeing metric values)。更新过
程从接收过程接收链接状态和Sequence Numbers PDUs(如图2中的4)。它在路由信息
数据库中设置新的路由信息(图2中的6),并传播到其它中介系统(图2中的7和8)。
更新过程的大致特性如下:
- 链路状态PDUs的产生是拓扑结构变化的结果,也具有周期性(periodically)。它们
也可能是由系统操作(如改变一条线路的路由算法(routeing metrics for a circuit))
间接产生的。
- 第1层链路状态PDU传播给一定范围内所有的中介系统,但不传播出此范围。
- 第2层链路状态PDUs传播给域内的所有第2层中介系统。
- 链路状态PDUs不传播到域外。
- 当路由通信量超过其产生的数量,更新过程通过一套系统管理参数强行设置一上界

6.8.1.3 转发过程
 此过程提供和管理把NPDU转发到所有目的地必须得缓存。它经由接收过程获得要
转发的ISO 8473 PDUs(如图2中的5)。它在适当的 进行查找。选择基于ISO 8473的
QoS Maintenance选项(option)的路由算法来选定适当的转发数据库。
It performs a lookup in the appropriate33The appropriate Forwarding
Database is selected by choosing a routeing metric based on fields in
the QoS Maintenance option of ISO 8473.
转发数据库(图2中的11)判定可能的输出邻域用于转发到给定的目的地,选择
一个邻域(图2中的12),向ISO 8473的机器发出错误指示(图2中的14)并向ISO 
9542的机器发出信号,要求重发PDUs(图2中的13)。


6.8.1.4 接收过程
    接收过程从以下源获得输入:
- 通过域内路由的NPID获得的PDUs(图2中的2);
- 从ISO 9542 PDUs 接收(图2中的1)的由ESIS协议传送的路由信息;
- ISO 8473协议机器(图2中的3)传递给路由函数的ISO 8473数据PDUs;
它还执行适当的动作,包括把PDU传给其他相同的函数(例如转发过程,图2中的5)

7 子网独立功能
本章描述路由函数使用的算法和相关数据库。为系统管理目的定义的管理对象和管理属
性(managed objects and attributes)将在第11章描述。
  以下是子网独立功能内部的进程和数据库。每一个进程或数据库标题后的圆括号内
是必须保持(keep)此数据库的系统类型。系统类型分为L2(第2层中介系统)和L1
(第1层中介系统)。注意:一个第2层中介系统在它的本域(home area)内也是一个
第1层中介系统,因此必须象维护第1层数据库一样维护第2层数据库。
过程:
- 决定过程(L2,L1)
- 更新过程(L2,L1)
- 转发过程(L2,L1)
- 接收过程(L2,L1)
数据库:
- 第1层链接数据库(L2,L1) 
- 第2层链接数据库(L2)
- 邻近数据库(Adjacency Database)(L2,L1)
- 线路数据库(Circuit Database)(L2,L1)
- 第1层最短路径数据库(L2,L1)
- 第2层最短路径数据库(L2)
- 第1层转发数据库,每路由算法(routeing metric)一个(L2,L1)
- 第2层转发数据库,每路由算法一个(L2)

7.1 寻址(Addresses)
   网路服务程序访问点(NSAP:Network Service Access Point)地址和系统的网络
的长度数量(length quantities)是可变的,这符合ISO 8348/Add.2的要求。ISO 8473
PDUs中包含的相应的NPAI和此PDUs(如LSPs和IIHs)必须首选二进制编码;这种信息
的根本(underlying)句法也许是抽象的二进制的句法或抽象的十进制的句法。此协议将
可能用到任一AFIs(Authority and Format Indicator)和他们相应的DSP语法。

7.1.1 路由域内系统的NPAI 
图3 显示了一个NSAP地址编码或网(NET)的结构。
以下将用由此国际标准描述的协议来解释NPAI的结构: 
范围地址(Area Address)——路由域内一定范围的地址,一个可变字长的量,包括NPAI
的全部优先部分(entire high-order part),不包括下面定
义的ID和SEL 字段:

ID(系统标志符) ——长度范围从1到8字节(octets)变化。每个使用此协议的路由
域的ID字长范围取一定值,域内所有中介系统的系统IDs将使
用此长度。假定至少有一个允许范围内的值能被接受,一组被某
设备(implementation)支持的ID长度称为该设备的设备选择
(implementation choice)。路由域的管理者必须确保域内所有
的ISs能使用为该域所选的ID字长。
SEL(NSAP 选择开关)—— 一个八位字段,用作接收PDU的实体(entity)(可能是传输
实体也可能是中介系统网络(Intermediate system Network
 entity)实体本身)的选择开关。它是最不重要的NPAI的后
八位(the least significant (last) octet)。
 

7.1.2 系统配置(Deployment of Systems)
为使本国际标准定义的路由协议正确运行,路由域内配置的系统必须满足以下要求:
a)对所有系统:
1) 域内的每一系统必须有唯一的系统ID,即不允许同一域中的两个系统有相同
    的ID值。  
2) 每一个域地址必须在全球开放系统互连环境(globe OSIE)内唯一,即一个
给定的域地址只能对应唯一的域。
  3) 拥有同一给定的域地址值的所有系统必须在同一域中。
b)对中介系统的附加条件:
1) 域内每个第2层中介系统必须有唯一的ID字段,即不允许一个路由域内的两
个第2层ISs拥有相同的ID字段。 
c)对终端系统的附加条件:
1) 不允许同一域内的两个终端系统有除SEL字段外完全相同的地址 
d)只有当一个终端系统的域地址与邻域IS的手册里的入口地址(entries in the adjacent
 IS's manual)Area Addresses parameter相同时,它才能与第1层连接(be attached
 to)上。
强制要求7.1.2的配置是路由域管理的职责。本国际标准定义的协议假定这些要求得到
了满足,但是没有对其检查的手段。
 
7.1.3 手动域寻址(Manual area addresses)
   一个IS对若干同义域地址的使用是通过管理参数-手动域地址(manual Area Addresses
来适应的。
The use of several synonymous area addresses by an IS is accommodated through 
the use of the management parameter manual Area Addresses

这个参数由系统管理为每个第1层IS在本地设置;它包含一个与IS相关的所有同义域
地址列表,表中包括IS自己的NET所包含的域地址。每一个第1层IS分配它的manual 
Area Addresses给它的第1层LSP(Link State Protocol Data Unit)的域地址字段(Area
Addresses field),在就允许第2层IS产生一个所有给定域支持的地址的合成列表。第2

层IS把合成列表放入它们的第2层LSP的域地址字段,以此在第2层子域内依次广播该合成
列表,这样就把信息发布到了与整个路由域相关的所有域地址上。在两个第1层IS间建立邻
域的过程要求至少有一个地址域为两个manual Area Addresses列表所共有,且在两个第1
层IS和一个终端系统和间建立一个邻域的过程,要求终端系统的域地址与IS的manual Area 
Addresses列表中的一个入口相匹配。因此,系统管理的职责是确保每一个与某IS相关的域
地址被包括在其manual Area Addresses列表中。特别是,与某给定第1层IS邻近的所有
ES和第1层IS必须包括在其中。如果一个8473 PDU的目的地址的域地址字段或它的源路由
域(source routeing field)的下一个入口的域地址字段不存在于接收此PDU的第1层IS
的域地址参数表(parameter area Addresses)中,那么目标系统不会在(not reside in )
此IS的域(area)中。这样的PDU将采用第2层路由(level-2 routeing)。

7.1.4 第2层地址编码(Encoding of Level 2 Addresses)
当一个完整NSAP地址采用ISO 8348/Add.2中指定的首选二进制编码方式来编码时,IDI
(Initial Domain Idendifier)的前几位(leading digits)被填充(如果需要),以此获
得AFI(Authority and Format Indicator)指定的最大IDP(Initial Domain Part)长度。
一个第2层地址前缀是一个完整NSAP地址的前端子串(leading sub-string),因此,它可
以匹配一组拥有相同前端子串的完整的NSAP地址。然而这种切断匹配(truncation and 
matching )在由NSAP地址的抽象句法描述(represented by the abstract syntax)的NSAP
上完成,而不是编码形式(and hence padded)上的。前缀匹配的例子可参见附录B的B.1。
LSP中的第2层地址前缀与完整NSAP地址的编码方式相同,除非前缀的末端进入IDP.
这时该前缀直接编码为无填充的四位信息串。

7.1.5 地址比较(Comparison of Addresses)
  除非另外声明,地址的数字比较将按照地址的编码形式进行,给较短的地址添零,使其
与较长的地址等长,然后进行数字比较。这种比较适应于NSAP地址,网络实体标题(Network 
Entity Titles )SNPA地址。

7.2 决定过程(The Decision Process)
  此过程使用链接状态数据库的信息来计算转发数据库,而转发过程从转发数据库获得每
个NPDU的下一转发的正确信息。第1层链路信息数据库用于计算第1层转发数据库,而第2
层链路信息数据库用于计算第2层转发数据库。

7.2.1 输入和输出(Input and output)
输入
- 链路状态数据库:它是最新的链路状态PDU的一组信息,而这些链路状态PDU来自所有已
知的中介系统(对第1层而言在本域内,对第2层而言在第2层子域内)。次数据库从更新过
程获得信息。
- 事件通告:这是更新过程的一个信号,表明域内某处的一个链接已发生了变化。
输出
- 每路由算法(routeing metric)一个第1层转发数据库;
-(仅在第2层中介系统)每路由算法一个第2层转发数据库;
-(仅在第2层中介系统)若域内第1层链接最低ID可达,第1层决定数据库把域内第2
层中介系统的标志符通告第2层更新过程
-(Level 2 Intermediate systems only) The Level 1 Decision Process 
informs the Level 2 Update Process of 
the ID of the Level 2 Intermediate system within the 
area with lowest ID reachable with real level 1 links 
(穿过第2层子域的路径组成的虚连接是不允许的)
-(仅在第2层中介系统)如果中介系统是部分指定(Partit ion Designated)第2层中介
系统,第2层决定过程通知第1层更新过程,默认路由算法的值(values of default routeing 
metric).
-(Level 2 Intermediate systems only) If this Intermediate 
system is the Level 2 Intermediate 
system in this partition, the Level 2 Decision 
Process informs the Level 1 Update Process of the 
values of the to and ID of the 
partition designated level 2 Intermediate system in 
each other partition of this area. 

7.2.2 路由算法(Routeing metrics)
对应于ISO 8473 QoS维护组(QoS Maintenance field)定义的四种可能的服务质量
(orthogonal qualities of service),有四种路由算法。从一个中介系统发出的每一个线
程将被系统管理(System management)分配一个值代表一个或多个算法(metric)
这四个算法如下: 
a) 缺省算法:能被域内的每一个中介系统理解。每个线程有分配给其算法的一个实际值
(positive integral value)。此值可能于线程中的任一目标函数有关,但根据习惯,
它可用来测量线程处理通信量(如每秒的吞吐量)的能力。数值越高表明容量越低。
b) 延迟度量:此度量测量相关线程的传输延迟。这是一个可选的度量,如果它被分配给
一个线程,就会有一个正整的值。越高的值意味着越长的传输延迟。

c) 花费度量: 此度量衡量相关线程使用的金钱上的花费。 这是个可选的度量,如果它被
分配给一个线程,就会有一个正整的值。这个国际标准中使用的路径计算算法要求所有的
线程的任一个度量都具有一个正值。因此,一个花费度量值为0的免费线程是不可能的。
按惯例,通常1才指一个免费的线程。越高的值意味着越大的金钱花费。

This metric measures the monetary 
cost of utilising the associated circuit. It is an optional 
metric, which if assigned to a circuit shall have a positive 
integral value22The path computation algorithm utilised in this
International Standard requires that all circuits be assigned a
positive value for a metric. Therefore, it is not possible to 
represent a free circuit by a zero value of the expense
metric. By convention, the value 1 is used to indicate a free circuit.
. Higher values indicate a larger monetary expense.


d) 错误尺度(Error metric):此尺度测量整个线路的剩余错误概率。它是可任意选择的
尺度,当指定于一个线路时有一个非零值。高数值表明该环路有未检测到的错误的概率较
高。

注意-决定进程将尺度值简单的加在后面。因而,这个尺度值的选定是很重要的。

每个中间系统应该能够根据默认的尺度来计算路由。任何一个或全部其它尺度的支持
都是任选的。如果一个中间系统支持基于某个尺度的路由计算,它的更新进程应该在链路
状态分组中向整个线路报告这个尺度值;否则,IS将无法汇报此尺度。
当决定进程为一个任选的路由尺度计算路径时,它只用一个向相应尺度报告的值来使
用链路状态分组。如果任何一个IS线路的尺度不包含任何值,系统将不计算基于此尺度的
路由。

注意-上述情况的一个结果是一个经过默认尺度可到达的系统是经过其它尺度无法到
达的。
    看7.4.2可得到转发进程如何根据ISO 8473 QoS中的维护选项的内容来选择尺度的描述。
以上四种尺度中的任何一个都有两种类型:内部尺度或外部尺度。内部尺度用来将通往
内部目的的链接/路由描述成路由域。外部尺度用来将通往外部目的的链接/路由描述成路由
域。尺度的这两种类型是不能直接比较的,除非内部路由相对外部路由来说总是首选的。换
句话来说,即使外部路由整个耗费更低的话也会选择内部路由。

7.2.3 广播子网络
    一个广播子网络不应被看成是一个完全连接的拓扑结构,它应被看成是一个和每一个附
属系统都有连接的伪网点。附属系统只报告与伪网点的连接。这个指定的中间系统用来代表
此伪网点,它将使每一个支持的路由尺度为零,构造链路状态协议数据单元来报告与广播子
网中所有系统的连接。这些路由尺度在通过与伪网点的连接被指定后被设为零值。在伪网点
中指定一个非零值,链路状态分组有使真实值翻倍的效果。
    伪网点会通过指定中间系统的源标志符识别,源标志符后面有一个被指定中间系统赋值
的非零伪网点标志符。此伪网点标志符对指定中间系统来说是唯一的。
    指定中间系统分别在第一层和第二层定义。它们就是我们所知的局域网第一层指定中间
系统和局域网第二层指定中间系统。见8.4.4。
    如果一个中间系统或它在广播子网上的SNPA被关闭,或者有更高优先级的中间系统已经
接管了此功能,该中间系统就成为指定中间系统。当一个中间系统不作为指定中间系统时,
它通过将伪网点链路状态协议数据单元剩余值设为零,并进行7.3.16.4中描述的操作,来在
整个网络内清除伪网点链路状态协议数据单元。一个局域网第一层指定中间系统清除第一层
链路状态协议数据单元,一个局域网第二层指定中间系统清除第二层链路状态协议数据单元。
如果一个中间系统既不作为第一层指定中间系统,也不作为第二层指定中间系统,它将清除
两层的链路状态分组。
当一个中间系统成为指定中间系统,同时它有同一层的链路状态协议数据单元,该协议
数据单元是由前一个指定中间系统为线路发出的,它将像前文所述一样,在整个网络内清除
链路状态协议数据单元。

7.2.4链接
只有两个中间系统中的一个通过它们的任一个SNPs可直接到达另一个,我们才可以说这
两个中间系统是相邻的。在一个连通的子网(点对点或一般的拓扑结构)中,当连接建立或
'hello'协议数据单元交换时,问题中的两个中间系统应该确定它们的相邻关系。然而,一个
故障的中间系统可能会报告与另一个中间系统是相邻的,而实际上并不是这样的。为了查出
此类错误, 决定进程检查以上连接在链路状态分组上是否如两个中间系统所报告的那样。如
果一个中间系统排除某个连接,它将不在它的链路状态协议数据单元中描述它。在子网广播
中,此类错误应该被指定的中间系统所确认,该中间系统有责任确定所有的中间系统都与子
网相连接。该中间系统在链路状态协议数据单元中包含这些中间系统(没有其它的),此协议
数据单元是为代表子网的伪网点产生的。

7.2.5 同一系统中的多链路状态分组
    更新进程为了保存连接带宽和处理,可以将一个简单的逻辑链路状态分组分成许多独立
的协议数据单元(见7.3.4)。另一方面,决定进程将特别注意顺序号为零的链路状态分组。
如果顺序号为零且生存期大于零的链路状态分组在指定系统中不存在,那么决定进程将不应
该处理任何存储在这个系统中的具有非零序列号的链路状态分组。 
    下列信息只能从顺序号为零的链路状态分组中获得。决定进程将忽略任何具有非零序列
号的链路状态分组。
a)链路状态分组数据库超载位的设置。
b)中间系统类型域的值。
c)区域地址选项。

7.2.6 路由算法概述
    决定进程使用的路由算法是路径最短的算法。比如说,这些算法是由所有的中间系统在
路由范围中独立且并发运行的。一个链路状态分组的内部范围的路由是发生在一个站对站的
基础上的:即算法只是决定下一站,而不决定一个数据链路状态分组到达目的的整个路径。
为了保证在路由范围中每一个中间系统能算出正确和一致的路由,国际标准是依靠以下性质:
a)路由范围中的所有中间系统统一使用同样的拓扑信息;
b)路由范围中的每一个中间系统在输入相同的拓扑结构和尺度时产生相同的路由组。
    第一个属性对防止出现不一致的路由是必要的,它是潜在的环型路径。第二个属性是为
了实现6.6中所规定的决定论所必须的。
    一个系统运行SPF算法可在路由域中找出一组通往目标系统的合法路径。这组路径可由
下述几种路径组成:
a)一个有最小尺度数的简单路径:这些路径被认为是耗费最小的路径;
b)一组有相等的最小尺度数的路径:这些路径被认为是耗费同样最小的路径;或者
c)一组到达比本地系统更接近目标系统的协议数据单元的路径:被称为向下流程的路径。
    不具备上述几种情况的路径是不合法的,将不被使用。
    决定进程在确定路径时,也会确定通往目的每条路径的下一站。此邻接关系沿用前面进
程用来转发协议数据单元的数据库。
    每一个路由层使用某个支持的路由尺度计算各自的路由。既然有四种路由尺度和两个层,
系统可以使用多种最小路程优先的算法。例如,
    --如果一个中间系统是一个第二层的中间系统,支持所有四种尺度,用所有尺度计算
最小路程耗费时,它将实现此算法八次。
    --如果一个中间系统是一个第一层的中间系统,支持所有四种尺度,并附加计算向下
流程路径,它将实现此算法4×(邻居数+1)次。
在国际标准中条款12的动态及静态适应条件下,任何最小路程优先算法的实现都是允许
的。推荐的实现方法在附录C中有详细描述。

7.2.7多余路径的移除
When there are more than maximumPathSplits minimal cost paths to a destination, this set 
shall be pruned until  only maximumPathSplits remain. The Intermediate system shall 
discriminate based upon:

注意-为了顺应6.6中定义的决定论,路径的精确优先级应被确定下来。

    --邻接类型:连接到中间系统的路径或第二层可到达的地址前面的邻接保持对其它邻
接的优先权。
    --尺度数:较小尺度数的路径对较大尺度数的路径保持优先权。通过尺度数,我们可
以知道沿着路径到达目的的尺度总数。
    --邻居标志符:在两个或更多路径与同一类型的邻接相连时,具有较低邻居标志符的
邻接对具有较高邻居标志符的邻接保持优先权。
    --线路标志符:在两个或更多路径与同一类型的邻接相连,并且邻居标志符相同时,
具有较低线路标志符的邻接对具有较高线路标志符的邻接保持优先权,它的线路标志符为下
列几种值:
    非广播线路的7ptpt线路标志符,
    运行第一层决定进程时广播线路的711线路标志符,
    运行第二层决定进程时广播线路的712线路标志符。
--局域网地址:当两个或更多的邻接的类型,邻居标志符和线路标志符都相同时(例如
一个系统在同一条线路上有多个局域网适配器)时,具有较低局域网地址的邻接对具有较高局
域网地址的邻接保持优先权。

7.2.8 健壮性检查
7.2.8.1 在整个过载的中间系统中计算路由
    决定进程将不使用从IS到邻接中间系统的连接,该IS的链路状态分组有链路状态分组
数据库检测设备。当过载的IS没有完全的路由信息库时,这样的路径可能会引入循环。在路
径保证没有循环的情况下,决定进程仍然使用与终端系统邻接的连接。
7.2.8.2 双向连通性检查
    除非两个中间系统都报告它们的连接,否则决定进程将不使用该连接。
注意--此检查不适用于和终端系统的连接。
报告连接指出默认的路由尺度至少有一个定义值。在一个连接中,同一个尺度的两个端
点允许有两个不同的定义值。因此,路由可能是不对称的。

7.2.9 转发数据库的建立
    转发数据库需要的关于路由尺度k的数据,是每一个系统n的一系列邻接。
7.2.9.1 根据一个第一层IS辨认最近的第二层IS
    对每一个路由尺度中间系统需要一条附加信息:根据此路由尺度到达的距最近的第二层
中间系统的下一站。第一层中间系统应该对尺度k确定整套套接的第二层中间系统R,使对
尺度K中间系统R的耗费最小。
    If there are more adjacencies in this set than maximumPathSplits, then the IS shall remove 
excess adjacencies as described in 7.2.7.
7.2.9.2 第二层中间系统中套接标志位的设置
    如果一个第二层中间系统在对尺度K计算第二层路由后,发现使用该尺度不能到达任何
其它区域,它将:
    --为尺度K设置套接标志位为假;
    --重新生成它的第一层链路状态分组,其分组号为零;同时
    --根据7.2.9.1中描述的算法为第一层中间系统对尺度k计算最近的第二层中间系统,
并将其插入到合适的转发数据库中。
注意--更新进程将检查每一个尺度K的套接标志位,使它能够在其链路状态协议数据单元
的ATT域中报告该值。
    如果一个第二层中间系统在对尺度K计算第二层路由后,发现使用该尺度能够到达至少
一个其它区域,它将:
    --为尺度K设置套接标志位为真;
    --重新生成它的第一层链路状态分组,其分组号为零;同时
--将与最近的第二层中间系统对应的尺度K的转发数据库入口设为本身。

7.2.10 修补分割区的信息
    一个区域可能会因为一条或多条连接的错误变得支离破碎。然而,假设第二层子域本身
是完整的,如果每一个分区都与第二层子域有连接,它将有可能经由第二层子域修补。见图
4
 
 
    系统A-I、R及P都在区域n中。当D和E的连接断开时,区域将变得分割的。在每一
个分区中,从第二层中间系统中选出分区指定的第二层中间系统。在分区1中是P,在分区2
中是R。第一层修补通路建立在这两个第二层中间系统之间。注意现在修补的连接是在P和R
之间,而不是在D和E之间。
   系统指定的第二层中间系统使用通往其它分区的转发网络协议数据单元,修补分区。它们
行使第一层中间系统的功能,并且向每一个分区指定的第二层中间系统公告第一层链路状态
分组中的邻接关系。这就是众所周知的虚邻接和虚连接。这样其它第一层中间系统通过分区
指定的第二层中间系统就可以计算它们通往其它分区的通路。这样分区指定的第二层中间系
统在8473数据网络协议数据单元中,把它的虚网络实体头标当作源NSAP和把邻接分区指定
的第二层中间系统虚网络实体头标当作目的NSAP,并压缩第一层网络协议数据单元,然后转
发它们。以下章节将对此有更详细的描述。
7.2.10.1 分区检测和第一层虚连接的建立
    通过在整个区域的操作,第二层中间系统可以检测出第一层区域的分区。为了参与分区
修补进程,这些第二层中间系统必须行使第一层中间系统的功能。无论是两个和更多的第二
层中间系统在第二层链路状态分组中报告它们成为分区指定的第二层中间系统,则给定的区
域的分区将存在。反过来说,当只有一个第二层中间系统报告时,整个区域就不会被分割。
分区指定的第二层中间系统就完成了分区修补。分区指定的第二层中间系统的选取,在下一
章有详细描述,应该在探测之前完成,这样修补进程才能开始。
    为了修补第一层区域的分区,分区指定的中间系统产生一个虚网络实体来代表分区。这
个虚网络实体的头标由第一列地区地址、第二层连接状态协议数据单元和分区指定的第二层
IS的标志符组成。这个IS将同时用记录在检验属性中的分区网络来建立一个通往每一个分
区指定的第二层IS的虚拟连接(用一个新的虚邻接关系处理对象来表示)。这些虚联接是分区
的修补路径。第二层中间系统通过在它的第一层链路状态协议数据单元的中间系统邻接关系
域加入每一个邻接的分区指定的第二层中间系统的标志符来向整个第一层区域报告。这些中
间系统邻居应该将虚连接标志位置成真。这个虚连接的尺度值应该是从系统的第二层路由数
据库中获得的默认尺度值d(N),N表示邻接分区指定的第二层IS经由第二层子域。
    为了探知第一层区域的分区和创立修补通路,一个分区指定的第二层中间系统在完成第
二层最小路程计算后应该执行下列步骤:
a)检查所有第二层中间系统的第二层链路状态协议数据单元
略
    如果发现匹配并且分区指定的第二层中间系统的标志符与这个系统的标志符不相等,将
分区指定的第二层中间系统的认证以及到那个中间系统的默认尺度的路径耗费,通知系统中
的第一层更新进程。
b)继续检查第二层链路状态分组直到在其它的分区中找到所有的分区指定第二层中间系统,
并且通知其它分区指定的第二层中间系统的第一层更新进程,这样
1)第一层链路状态协议数据单元可以被传播到所有其它的分区指定的第二层中间系统(经由
第二层子域)
2)所有其它的分区指定的第二层中间系统应该在系统的第一层链路状态协议数据单元被告知
邻接关系。如果一个分割已结束,该中间系统应该通过消除虚连接关系,消除网络虚连接实
体和虚连接。在运行完分区检测及上述的虚连接算法后,并且另一个分区指定的第二层中间
系统的在它的第一层链路状态协议数据单元的虚连接没有被检测到,这个分区指定的第二层
中间系统应该检测到一个修补完的分割。
    如果这样的一个虚邻接关系被创建或销毁,中间系统将产生一个"分区虚连接被改变"的
通知。
7.2.10.2分区指定第二层中间系统的选择。
   这个第二层中间系统应该是这样的系统:
   --在它的链路状态分组中使用默认的尺度,接着报告本身;
   --在实现分区修补选项时报告本身;
   --像这个区域第一层中间系统那样工作;
   --不通过任何虚连接经由第一层就能到达;
   --有最小的标志符。
    在第一层决定进程结束后和第二层决定进程决定第二层路径之前,通过运行决定进程运
算选择分区指定第二层中间系统。
    为了保证正确的选择分区指定第二层中间系统,通过检查那些虚连接位标志位为假的第
二层中间系统邻居,决定进程只使用在这个区域中的第一层链路状态分组来运行。这个决定
进程运行的结果得到了所有的不通过虚连接路径而通过第一层就可以到达的第一层中间系
统。通过这种设置,第二层中间系统将从满足下列条件的中间系统中选择:
    --IS类型(在第一层链路状态分组中所报告的)是第二层中间系统;
    --ATT指出必须具有默认尺度;
    --P位指示支持分区修复选项;
    --ID必须是第二层中间系统的子集中最小的。
7.2.10.3 分区地址的计算
A Level 2 Intermediate System shall compute the set of partitionAreaAddresses, which is 
the union of all manu-alAreaAddresses as reported in the Level 1 Link State PDUs of all Level 2 
Intermediate systems reachable in the partition by the traversal of non-virtual links. If more than 
MaximumAreaAddresses are present, the Intermediate system shall retain only those areas with 
numerically lowest Area Address (as described in 7.2.11.1). If one of the local system's 
ManualAreaAddresses is so rejected the event "Manual Address Dropped From Area" shall be 
generated.
7.2.10.4虚连接中网络协议数据单元的封装
    通过虚连接的传播的所有的网络协议数据单元必须以ISO 8473的标准来封装。它必须包
含分区指定第二层中间系统的虚网络实体头标,在网络协议数据单元前即在源地址域中加此
头标,在目的地址域中加邻接的分区指定第二层中间系统的虚网地址。在双方NSAP中的SEL
域中都应包含IS-IS路由选择值。输出协议数据单元的服务质量维护域应被设成表明转发使
用默认路由尺度的值。(见32页表1)
    为了标识数据和错误报告网络协议数据单元,外部的网络协议数据单元应该从内部的网
络协议数据单元中拷贝分割允许和错误报告位以及生存期域。当内部网络协议数据单元未被
封装,它的生存期域将被设成外部网络协议数据单元的生存期域的值。
    对LSP和SNP分割允许标志位应该设为真,错误报告标志位设为假。生存期域被设为255。
当一个内部LSP未被封装,它的剩余生存期将消耗255与外部网络协议数据单元的生存期域
的值的差的一半。
数据网络协议数据单元未被封装之前不允许被分割,除非它的长度(包括分组头)超过
65535字节,在这种情况下,原始数据网络协议数据单元应该分割后封装。在任何情况下,
为了在分区指定第二层目标中间系统能够将其重新组合并解封装,在传输之前必须依据ISO 
8473标准进行分割。在7.4.3.2中,封装作为发送进程的一部分有更详细的描述。在7.4.4
中解封装作为接收进程的一部分有更详细的描述。

7.2.11 区域地址的计算(Computing of area addresses)
A Level 1 or Level 2 Intermediate System shall compute the values of areaAddresses (the 
set of Area Addresses for this Level 1 area), by forming the union of the sets of 
manualAreaAddresses reported in the Area Addresses field of all Level 1 LSPs with LSP 
number zero in the local Intermediate system's link state database.
注意--这包括所有的源系统,不管现在是否能够达到。它还包括本地中间系统本身的
链路状态分组为零的链路状态分组。
注意--这个设置对于数据库内容的每一个改变,没有必要马上更新。计算可以延续到
下一个决定进程运行之前。
If more than MaximumAreaAddresses are present, the Intermediate system shall retain only 
those areas with nu-merically lowest Area Address (as described in 7.2.11.1). If one of the local 
system's ManualAreaAddresses is rejected the event "Manual Address Dropped From Area" 
shall be generated.

7.2.12 路由优先级(Order of Perence of Routes)
    如果一个中间系统参加第一层的路由并且通过检查区域地址确定给定的目的的是可以到
达的,那么将只通过第一层路由到达目的。特别的:
a) 第一层路由总是建立在内部尺度基础上的。
b) 在这个区域的路由中,那些支持服务质量申请的路由优先于不支持的。
c) 支持相同服务质量的路由,最小路径优先。对于最小路径的确定,如果一个支持特别服
务质量的路由是可用的,将使用它,否则将使用默认尺度。

d) 在相等成本的路线之间,分区方法(spilitting)可以被应用。
如果一个IS在第一层路由中,但不在第二层路由中,那么就必须找到一个目的地址至
少与第二层IS相连,则目的地址可以通过以下方法路由到第二层IS:
a) 第一层路由总是根据内部的标准。
b) 在连接第二层ISs的路线中,支持所要求的QoS的路线是被优先考虑的。
c) 在相同的QoS情况下,最短路线是被优先考虑的。在决定最短路线时,
若路由上预先设定的QoS是被允许的,则使用这个设置,否则将使用缺
省设置。
d) 在相等成本的路线之间,分区方法(spilitting)可以被应用。
如果一个IS参与第二层的路由并且与第二层相连,则这个IS(通过寻找
地区地址)发现已给定的目的地址在这个区域中并不可达,寻路这样的目
的地址可如下所述:
a)若路由路线上预先设定的QoS是被允许的,则优先使用这个设置所在
的路由路线。
b) 若路由路线上的QoS都一样,优先级这样设置:
1) 最高优先级:有路线符合寻路领域中的地区地址
2) 中等优先级:有路线符合带有内部标准的可达地址前缀。若有多
个目的地址符合上述要求,最长的前缀优先。
3) 最低优先级:有路线符合带有外部标准的可达地址前缀。若有多
个目的地址符合上述要求,最长的前缀优先。
c) 当优先级相同的路线选取时,最短路线优先。在决定最短路线时,支
持预先设置的QoS的路线优先;否则将使用缺省的设置。在相等成本
的路线之间,分区方法(spilitting)可以被应用。

7.3 更新过程
更新过程是为了生成和繁殖链环状态信息,并且要可靠的遍及路径领域。
判定过程(Decision process) 使用链环状态信息计算路径。

7.3.1 输入和输出
输入
--邻接数据库维持在子网络依靠的功能。
--可达成的地址管理目标维持在系统管理层次。
--邻接数据库变化的通知由子网络依靠的功能实现。
(环路向上,环路向下的,邻域向上,邻域向下的,以及成本改变事件)
--附加帧 (仅适用于第2层的间接系统)
此帧指示这个系统是否能到达其他领域(穿过第2层路由)。
--连接状态的PDUs 
接收过程传递连接状态的PDUs 到更新过程,并指示出它所在的邻域。
――PDUs 的序号
 接收过程传递PDUs的序号到更新过程,并指示出它所在的邻域。
――其他分割
在第2层的判定过程(指对于第1层的更新过程,但是建立在第2层的间接系
统之上)能够使一系列被指定的分割有效。
 
输出
――连接状态数据库
――输出信号到达判定过程的事件,此事件或者是接收一个具有信息的LSP,或是
清除一个数据库中的LSP。如果被接收的LSP有一个不同的序列号,又或是其生存
寿命(Remaining Lifetime)具有一可变化的长度部分,就不应产生输出事件。
注――
一个执行功能会比较根据序列号的变化存储的LSP的校验和,与之比较的是,
接收到的校验和。若其不同,则假定变化的长度部分不同,
并要把这一事件告知判定过程。若其相同,一个8位对照要产生,用以决定是否报
告此事件。

7.3.2 局部链环情形的产生
更新过程是为了产生一系列的LSP。产生一系列的LSP的目的是通知其他的间接系
统(在第1或第2层的子域中)这个连接的状态,此连接是在间接系统和其邻系统
之间的。在间接系统中的更新过程,在以下的环境中产生一个或多个新的LSP:
A) 计时期满的时候;
B) 当收到来自邻域数据库的变化(Adjacency Database Change) 的子网依赖性功能 
(Subnetwork Dependent Functions) 的通知;
C) 当有一些网络管理特征改变时会引起LSP信息的改变(例如,在寻址手册中的
改变)。

7.3.3 手册路由信息(Manual Routeing Information)的应用

手册路由信息是来自系统管理的路由信息。可分为两类:
a) 手册邻域
b) 可达地址

 
7.3.3.1 手册邻域(Manual Adjacencies)
一个终端系统的邻域可能是由系统管理产生。这样的一个邻域被定义为
手册终端系统邻域。为了产生一个手册终端系统邻域,系统管理将按以下分类:
a) 可从邻域到达的系统Ids
b) 相关的SNPA地址
这些邻域将以带种类手册邻域的形式和邻近系统种类的终端系统的形式出现。 这些
邻域向更新过程提供输入,类似于通过ISO 9542 操作产生的邻域的形式。当状态
改变到达上层邻域时,信息被包括在间接系统自己的第1层LSPs中。
注――手册终端系统邻域不应被包括在代表虚结点的第1层LSPs中,因为那将预
示在广播子网中的所有间接系统具有同样的一系列手册邻域被这个环路定义。
被指派到手册邻域的规则必须是内部规则。
7.3.3.2 可达地址
第2层间接系统应该拥有许多由系统生成的可达地址,来管理目标。
当一个可达地址处于状态On下并且其产生环路同样处在状态On下时,其定义的路
由测量标准的名字和每个都将包括在这系统产生的第2层 的LSPs内。
被分配给可达到的地址作为管理对象的目标的测量标准既可是内部的,也可是外部
的。
当全部下列条件都实现的时候,可达到的地址被认为是积极的:                                
a) 父环路处于状态On下;
b) 可达到的地址处于状态On下;
c) 父环路属于广播型或处于数据连接状态运行中。
当一个可达地址由不活跃状态变为活跃状态时,将会使得更新过程包含第2层LSPs
的可达地址的地址前缀,它是由7.3.9的系统产生的。

当一个可达地址由活跃状态变为不活跃状态时,将会使得更新过程中不再包含第2
层LSPs的可达地址的地址前缀。

7.3.4  多层LSPs
由于一个LSP的缓冲区的大小是受限制的,它不可能包含所有系统邻域的信息。在
这种情况下,系统可以用多层的LSPs来传递这信息。
在同一个set中的每一个LSP具有同样的源ID域(见第9条),但是他们各自的LSP
号域却不一样。虽然几个不同的LSPs要独立的被更新过程处理,但是允许运用管
道的方法对拓扑分配进行更新。不过,决定过程可以因为他们全部都使用相同的
source ID来识别他们全部都附属于同一开始系统。
注――
即使信息量的大小可以放在单一的LSP中,系统也可以选择性地选择用几个
LSPs来传递它;
这里使用单一的LSP传递信息不是强制性的。
注――
为了最大限度的控制冗余信息的传输,建议根据环路的可达到的地址前缀信
息,将IS分组。
这样去做将保证如果对另一个路由的领域的环路改变状态,最少的LSP片断
将必须被传送。
    在系统中的第1层和第2 层的LSP的最大容量,分别由产生L1 LSP和产生
L2 LSP 缓冲区的管理参数控制。
注意――
这些参数应该由系统从始至终的控制。如果不这样做,一些邻域的初始化将失
败。
IS对于LSP号为零时,作如下规定:
a) 下列情况仅在LSP号为零时具有意义:
1) 对于LSP数据库的设置溢出了。
2) IS的类型值field(?)。
3) 区域地址选项。(仅在LSP号为零时出现,见下)。
b) 当上述的项目的某一个的值被改变的时候,IS将用LSP的数字0重新发
行LSP通知变化给其他的IS。其他的LSPs没有必要被重新发行。
如果特定的毗邻关系被分配给特定的LSP数字,它不应再被分配到其他的
LSP数字。
因为把毗邻关系从一个 LSP移动到另一个LSP,能给那个系统的连接性造
成暂时的损失。他将会引起原来包括有关毗邻关系的(现在不包括那个信
息)信息的LSP的新版本在其他的LSP的新(现在包括有关毗邻关系的信
息)版本前面被传播出去。
为了减少其影响,下列限制被放到LSPs的信息的工作任务上:
a) 
区域地址选项将仅仅发生在LSP数字为的LSP中。
  b)
将在地区地址任意选择(Area Addresses option)后面,并且在任何的
中端系统(或者就第2层来说,给加上前缀)选择的前面,发生中间
系统邻居任意选择(IS Neighbours options)。
  c)
End System(or Prefix) Neighbour options 发生在任何一个Area Address 
or Intermediate System Neighbour options 的后面。
注――
在这里的上下文中,采用的方法是,从同一LSP或更高一层LSP号中的开始找
到高八位号。
注――
这里的一个执行是为了保证由特定的系统产生的LSPs的号,被包含在10%的
理想数字内。这些理想数字是必须的,如果所有的LSPs被紧密的打包。这样
就可以重新使用那些较低的LSP号,为了新的邻域的需要。如果要把一个邻域
从一个LSP移到另一个LSP中,SRM帧将被作为基本动作。如果这两个SRM
帧没有被设为基本动作,竞争将会存在,两个中的一个将会被先传播,而另一
个则要等待一个完整的传播周期。如果发生这,毗邻关系将从拓扑结构中被错
误的删除,并且,路线可以变得对于LSP Generaton Interval来说潜在性的,对
时间的时期来说不稳定。当一些事件需要改变LSP信息和系统的时候,系统将
重新发行那个(或者那些)将有不同的内容的LSPs。它不要求重新发行那些不
变的LSPs。这样单一的终端系统的毗邻关系变化,仅仅需要把提到那个毗邻关
系的终端系统邻居任意选择的LSP重新发行。参数的最大的LSP产生间隔和最
小的LSP产生间隔将个别地适用于每个LSP。

7.3.5周期性LSP产生
更新过程将定期地把全部LSPs(第1层或第2层)再生并广播到所有环路(通过把
SRMflag放在每个环路上),这样作是为了传给当地的系统和任何它有关联的虚结
点。中间系统将用最大的LSP产生间隔再生每个LSP,应用的是紧张不安(jitter),
如同10.1中描述。
这些LSPs可以在单一的计时器期满时被完全产生,或者,对于个别的LSP有两个
可供选择的计时器,在这个计时器期满时产生。

7.3.6 事件驱动LSP产生
不仅是LSPs会周期性的产生,中间系统也将产生LSP,当有使得信息内容改变的
事件发生的时候。
下列事件可以引起这样的变化:
- 邻域或者环路的Up/Down事件
- 一个环路的规格(metric)变化
- 可达地址的规格(metric)变化
- 在手册中变化

地域地址
- 在系统ID中变化
- 被指定的IS状态的变化
- 在等的状态中变化
发生这样的事件的时候,IS将会产生一个再生的带有新的序列号的LSP(s)。如果
一个事件要产生一个以前未被产生的LSP(例如,对于一个不在现存LSP的邻域的
邻域向上事件),序列号将被设为1。IS将通过为每一个环路设置SRM帧,来广播
这个LSP(s)。计时器的最大的LSP产生间隔将不被复位。在产生每一个独立的
LSP时,都存在一个控制向下的计时器(最小的LSP产生间隔)。

7.3.7 第一层LSPs的产生
(非虚结点的)
第一层的LSP(不代表虚结点的)在其变化的长度域中包含以下信息:
―― 在地区地址选项中,有一系列针对IS的手册地区地址。
―― 在IS的邻域选项中,有一系列IS的邻域系统的IDs,形成于:   一系列邻域
系统的IDs具有一个附加的八位零组(表示为非虚结        点),来自邻域的Up
态,环路的形式是点到点式,带有类型L1和类型 L2的xneighbourSystem 的邻域
功能。
测量标准(为每个被支持的路由的测量标准)被放到环路第1层的测量标准值上。
这一系列的具有附加八位零组的IDs,来源于IS的虚邻域的网络实体。(当要编码
这些项目式,就要标注这个虚帧,见7.2.10.)
缺省的标准被设置为虚拟网所有成本,为了缺省的路由的设置。
剩下的测量标准将被设定为未得到支持。
―― 一系列的邻域终端系统的IDs形成于:
  IS本身的系统ID,根据标准的要求有一个零值。
来自邻域的一系列终端系统IDs,自动设置成Up态,环路形式为点到点式,
进或出邻域终端系统。
测量标准将设置为每个被支持的路由测量标准,并被放到环路的第1层 的
标准值上。
―― 在鉴别信息的领域中
如果系统地区有传输信号功能口令非无效,包括在鉴别信息区包含鉴别信息
类型以及值的承认型的传输口令。

7.3.8  第1层 的虚结点的 LSPs产生
IS将产生一个第1层的虚结点的LSP,环路中的IS是被指定的局域网IS系统。LSP
将在其变化的长度范围内指定下列信息。在零值情况下,支持所有的路由标准。
-不允许地区的地址选项。
  注:
因为这些将要设置为虚结点LSP的地区地址已经被设置为可以通过它自己的非
虚结点LSP。
-在IS邻域选项中
  对于在环路中邻接IS的一系列IS的IDs,其虚结点LSP产生于:
  被指定的IS自身的系统ID,带有附加的八位零(表示非虚结点)。
来自环路邻域的,邻接(xneighbourSystemType L1)的 IS,邻接 (xL2的IS),
邻接(Usage Level 1),并且环路处在Up态,一系列邻域系统IDs。
(neighbourSystemIDs,带有表示非虚结点的附加八位零)
   -在终端系统邻域选项中
  一系列邻域终端系统的IDs产生于:
这样的终端系统IDs,它们是自动设置的,处于Up态,并且其环路中有与邻域
系统类型有关的虚结点。
   -在鉴别信息的领域中
如果系统地区有地区传输信号口令(areaTransmitPassword)非无效,则包括在鉴
别信息区内,包含有鉴别信息类型的以及值的地区传输信号口令。
7.3.9 第二层LSPs的产生
(非虚结点的)
第二层的LSP(不代表虚结点的)在其变化的长度域中包含以下信息:
   -在地区地址选项中
  如同在7.2.11所描述的那样,给定这中间系统的地区地址的一套计算。
-在分割指定的第二层IS选项中
  为了划分第二层的IS,定义了分割指定ID。
-在IS邻域选项中
  有一系列IS的邻域系统的IDs,形成于:
IS本身的系统ID,根据标准的要求有一个零值。
来自邻域的一系列终端系统IDs,自动设置成Up态,环路形式为点到点式,进
或出邻域终端系统。
测量标准将设置为每个被支持的路由测量标准,并被放到环路的第2层 的标准
值上。
广播类型的全部12个回路的IDs。(即邻域虚结点的IDs)
测量标准(为每个被支持的路由的测量标准)被放到环路第2层的测量标准值上。
-在前缀邻域选项中,一系列不同长度的前缀来源于:
在所有的环路处于On的状态时,一系列操纵对象的可达地址的名字处于On的
状态。
标准被设置为第2层的可达地址的标准值。
-在鉴别信息的领域中
如果系统地区有邻域传输信号口令(domainTransmitPassword)非无效,则包括
在鉴别信息区内,包含有鉴别信息类型的以及值的领域传输信号口令。

7.3.10 在第二层的虚结点LSPs的产生
在第二层的虚结点LSP产生于每一个环路,环路中的IS是被指定的第二层局域网IS。
而且,这个LSP在其可变的长度域中包含以下信息。无论在何种情况下,零值被用于
所有被支持的路由规则中。
   -不提供地区地址选项。
注意- 因为这些将要设置为虚结点LSP的地区地址已经被设置为可以通过它自己
的非虚结点LSP。
-在IS邻域选项中。
  对于在环路中邻接IS的一系列IS的IDs,其虚结点LSP产生于:
  被指定的IS自身的系统ID,带有附加的八位零(表示非虚结点)。
一系列带有八位附加零的领域系统IDs(neighbourSystemIDs),它们来自于处在
Up态的环路(此环路邻接邻域系统类型L2的IS)。
-不提供前缀邻域选项。
-在鉴别信息的领域中
  如果系统地区有邻域传输信号口令(domainTransmitPassword)非无效,则包括在
鉴别信息区内,包含有鉴别信息类型的以及值的领域传输信号口令。
  

7.3.11校验和的产生
这个国际标准利用了在ISO 8473中定义了的校验和功能。
当LSP产生时,源IS应当计算其校验和.这个校验和不能再被任何其他系统修改.
此校验和使侦测存储错误成为可能,进而防止其被使用在正确的路由信息中以及被更新
过程进一步传播.
校验和的计算应当包括LSP中出现在Remaining Lifetime域之后的所有域,而这个域
和其之前的域不包含在内.以便系统不通过计算就能够使用和更改LSP的生命周期.
作为对硬件失败的一项附加的预防,当源端计算校验和时,应当在开始时将两个校验和
变量初始化为计算出的系统ID(源ID的一部分,例如6字节).(当网络实体有效时,只要系统
ID改变,此值将被计算且存储起来.)然后IS应当在源ID域的第一个ID长度的字节后的内
容上继续校验和的计算.
注意 - 所有对LSP校验和计算军将源ID域作为第一个字节.这个过程防止了源端
将其它系统的ID当作源而发出连接状态(Link State)PDU.

7.3.12初始传递
IS应能在连接状态数据库中存储生成的连接状态PDU,覆盖掉系统以前生成的相同LSP
号码的连接状态PDU。然后IS为连接状态PDU设置SRMflag标志,指示这些连接状态PDU
将在IS邻接的所有环中传播