普通的机械气门正时系统,进气门开启动作是定死不变的,但内燃机在不同工况下所需的理想进气量并不相同。这对矛盾使得设计时必须两头考虑,这限制了内燃机综合表现——动力和效率——的提升。
最最基本的凸轮轴气门正时系统长这样,发动机曲轴(最终输出动力的轴)转 2 圈,上面的凸轮轴转 1 圈。气门由凸轮轴上的凸轮凸起部分顶开,这样气门开闭动作就与发动机运转的相应时机相匹配。进排气门各自的开启时段,正好对应四个冲程中的进气冲程和排气冲程。
缺点也很明显,所有东西都是定死不变的。如前面所解释的,面对不同工况下的不同需求,“不变”不是好事。
别急着说自己看不懂,放心,即便你完全不懂内燃机的四个冲程,也并不影响你了解可变气门技术的神奇——本质不过是工程师们大开脑洞,用奇思妙想攻克空间几何问题。
可变的开门时机
虽说四个冲程中,进气-压缩-做功-排气,进、排气都有对应的冲程,但真实的进排气动作时间并不与相应冲程 100% 对应。因为在高转速时,各个冲程时间极短,我们希望进气门早一点开、排气门晚一点关,进排气门有一点点时间是同时开着(术语叫气门重叠角),这样可以让此时的进气更充足、排气更彻底。然而在低转速时,进排、气时间都很充裕,气门重叠角又不宜过大,否则进气门吸进来的空气又被同时开启的排气门排出去了,导致进气不足。
(overlap:真实运转中,进气门与排气门开启会有很小的重叠)
这样就产生了第一对矛盾:高转速时气门重叠角要大一点,低转速时又需要减小重叠角。落实到气门动作上,大重叠角需要进气门开启提前一点,小重叠角则需要进气门滞后一点。
于是为了实现兼顾,可变气门正时系统 VVT 被发明出来。人们在原有凸轮轴基础上,在凸轮外侧安装了一个可旋转一定角度的相位调节器。进气门凸轮轴相对于整个正时系统的角度可以变化,进气门开启的早晚时机也就可以调节,从而实现可变的气门重叠角。
VVT 用于进气门的效果最明显(下面其他可变气门技术同理),后来也开始在排气门上应用 VVT,进、排气两侧都有 VVT 的系统,就会被称为双 VVT 或 DVVT。现在多数汽车大厂都掌握(或者获得)了 VVT 这项技术,各家命名有所不同,比较著名的像丰田的 VVT-i、宝马的 VANOS 等等。
(右上角:VVT 实现气门重叠角可变)
可变的气门开度
与可变气门正时要解决的问题类似,基础的机械气门结构,气门打开的幅度(术语叫气门升程)是固定不变的:凸轮的物理凸起有多高,气门就会被“顶开”多大。
但不同的工况下,内燃机所需的最佳充气速度是不同的。比如低转速时,进气门开启时间较长,需要进气过程尽量缓和绵长,这样可以让油气混合得更均匀,提高燃烧效率;而高转速时,进气门开启时间很短且发动机通常处于高负荷,本来就需要更多空气,所以需要进气效率尽可能高、尽快吸入充足空气。
这又是一对矛盾,设计内燃机需要平衡高低转速时的需要,妨碍了内燃机进一步提高效能。于是,可变气门升程系统 VVL 出现了。实现气门升程可变,各家有自己的独门方法,最著名的当然是本田引以为豪的 VTEC 技术。
VTEC 早在 1989 年就诞生了,在今天看来,本田的做法其实非常简单:一个凸轮的形状是固定的,那我另加一个高转速专用凸轮不就得了?在传统结构基础上,VTEC 增加了一个对应更高升程的“大”凸轮。在更高转速需要更强动力时,拨动一个锁止销,即切换到高升程凸轮。本田以简单但精巧的纯机械结构,轻松实现了气门升程的两级可调。
(本田 VTEC 的基本原理)
凭着 VTEC,本田在日系车辉煌的 90 年代打造了一系列著名高性能引擎,VTEC 也成了本田粉丝的信仰所在。
几十年过去,VVL 可变气门升程已经为多数品牌所掌握,有些还通过各种独门方法,实现了能够无极连续调节的可变升程(VTEC 是两级可调)。典型如宝马的看家技术 Valvetronic、日产的 VVEL,用电机控制手段,实现了全程连续可调的可变气门升程。
基于可变气门的进气调节技术,这几十年来,大体上就是 VVT 可变正时和 VVL 可变升程两大类。在实现了电机控制的无极调节后,继续优化 VVT 和 VVL 的价值已经不大,两段调节的本田 VTEC 到今天依然在发光发热。至于柯尼塞格使用的 Freevalve 技术,彻底去掉了机械正时传动,全面由电子系统直接控制气门,虽然效果拔群,但成本和可靠性难以用于大众市场。
然而对于一些之前在内燃机领域相对落后的车企,跳过 VVT 和 VVL 直接研发“新东西”,就是一个划得来的选择。
可变的开门时长
2020 年,现代在这个时候拿出了自己的得意之作:可变气门持续期 CVVD 技术。这是第一个实现无极调节进排气门正时与持续时长的气门控制技术。
可以这么理解,VVT 是调节“气门开启那段时间”出现得早一点还是晚一点,VVL 是调节气门开启幅度的大小,而 VVD 是调节“气门开启那段时间”的持续时长(也就同时控制了开门动作的早晚)。至于 C 代表的是无极、连续可调(continuously)。
现代这个 CVVD 技术,首先是可以变相改变进气门开启的时机,覆盖了传统 VVT 调节气门重叠角的功能;和 VVL 相比,可变气门升程的根本目的是改变进气效率、调整单位时间进气量、最终调节进气量,而 CVVD 可调节的气门持续时长同样能达到这一效果。只不过 VVL 是改变开门幅度大小,VVD 是改变门开启的时长。
VVT 和 VVL 都好理解,VVT 改变气门打开的早晚,把对应的凸轮偏转一个角度就是了;VVL 改变气门打开的幅度,切换到一个凸起更大的凸轮就好了。VVD 要改变气门打开的持续时间,而且是无极调节,难道要让金属凸轮的形状连续可变吗?又不是气球。
CVVD 技术要实现的效果看似复杂,基本原理却也简单,但细想你又不得不叹服“这是咋想出来的”。CVVD 技术的基础原理,可以归纳为“轴心错位会让物体旋转过程的半圈变快,另外半圈变慢,而总体转速不变”。
(注意:三张图中的紫色杆是始终同步的)
先忽略掉黄色代表的凸轮,橙色连杆是套在蓝、紫色杆上,可以延着蓝、紫杆自由滑动。以最左边为例,当橙色连杆向左偏移,偏离原本的共同旋转中心,如果以紫色连杆为参考系,你会发现蓝色连杆在旋转到左边半圈时变慢,转到右边半圈时又加快,最终转完一整圈的用时不变,即蓝色杆总体转速还是与紫色杆同步。
调整橙色连杆偏离原旋转中心的距离,可以改变蓝色杆转到左侧时变慢、转到右侧时变快的幅度(或者说改变转速差),从而实现连续的无极调节。
现在,把紫色杆想象成发动机凸轮轴,所以转速是始终稳定不变的;蓝色代表着控制气门动作的凸轮,我们要改变的就是它的运动;上面的左右半圈,对应着控制气门的半圈和另外半圈。把橙色连杆的旋转中心向一侧偏移,凸轮在旋转到这半圈时速度就会变慢,控制气门开启的持续时间变长;但转到另一半圈时转速又会加快,“追上”紫色凸轮轴的转速,于是同步进入下一个整圈。
总之,就是借助一个第三连杆的偏移,让旋转过程的其中一半减速,转到另一半时再加速(或者反之),所以整体上还是能保持每一圈同步。但气门控制只与其中的半圈相关,所以控制其中一半的转速快慢,就可以调整气门开启持续期的长短,并且可以做到无极连续可调。
把上面那张动图,改造为现实中的发动机结构,CVVD 的核心部件就出来了。
与我们熟悉的 VVT、VVL 系统相比,现代开发 CVVD 技术的时代毕竟更近,所以 CVVD 第一个做到了气门持续时长的连续可变,实现更为接近理想化的发动机进气控制。
CVVD 的实际装机效果,按照现代的官方数据,动力输出增加 4%、燃油效率提高 5%、排放减少 12%。看上去似乎不多?请注意这仅仅是增加了一套 CVVD 部件便获得的效果,增加的重量和成本很小;由于是纯机械系统,可靠性和可维护性也有所保证(发生故障的唯一可能就是机械损坏)。
不管是各类 VVT、各种 VVL 还是新生的 VVD,可变气门控制技术有一个共同特点:账面提升数据看着不大,但能对全工况都有改善作用。有些新技术纸面效果显著但应用工况较窄,有些新技术纸面不惊人但惠泽全工况。所以包括 CVVD 在内,可变气门技术必然是与其他类型的发动机技术一道使用,比如直喷、比如阿特金森循环、比如 EGR 废气再循环等等。
在全面电动时代到来之前,人类追求理想热机的道路,就是由这样一点一滴的进步携手垒出来的。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。