Think Python 2 中英文对照读本

 主页   资讯   文章   代码   电子书 

Title: ThinkPython 双语学编程 Chapter 11
Date: 2015-12-11
Category: ThinkPython
Tag: 双语,Python,ThinkPython

Chapter 11 Dictionaries 字典

This chapter presents another built-in type called a dictionary. Dictionaries are one of Python’s best features; they are the building blocks of many efficient and elegant algorithms.

本章要讲的内容是另外一种内置的类型,叫字典。字典是 Python 最有特色的功能之一;使用字典能构建出很多高效率又很优雅的算法。

11.1 A dictionary is a mapping 字典是一种映射

A dictionary is like a list, but more general. In a list, the indices have to be integers; in a dictionary they can be (almost) any type.

字典就像是一个列表一样,但更加泛化了,是列表概念的推广。在列表里面,索引必须是整数;而在字典里面,你可以用几乎任何类型来做索引了。

(译者注:从字符串 string,到列表 list,再到字典 dictionary,Python 这个变量类型就是一种泛化的过程,内容在逐步推广,适用范围更大了,这里大家一定要对泛化好好理解一下,以后自己写类的时候很有用。)

A dictionary contains a collection of indices, which are called keys, and a collection of values. Each key is associated with a single value. The association of a key and a value is called a key-value pair or sometimes an item.

字典包括一系列的索引,不过就已经不叫索引了,而是叫键,然后还对应着一个个值,就叫键值。每个键对应着各自的一个单独的键值。这种键和键值的对应关系也叫键值对,有时候也叫项。
(译者注:计算机科学上很多内容都是对数学的应用,大家真应该加油学数学啊。)

In mathematical language, a dictionary represents a mapping from keys to values, so you can also say that each key “maps to” a value. As an example, we’ll build a dictionary that maps from English to Spanish words, so the keys and the values are all strings.

用数学语言来说,一个字典就代表了从键到键值的一种映射关系,所以你也可以说每个键映射到一个键值。举例来说,我们可以建立一个从英语单词映射到西班牙语单词的字典,这样键和简直就都是字符串了。

The function dict creates a new dictionary with no items. Because dict is the name of a built-in function, you should avoid using it as a variable name.

dict 这个函数创建一个没有项目的空字典。因为 dict 似乎内置函数的名字了,所以你应该避免用来做变量名。

>>> eng2sp = dict()
>>> eng2sp
{}

The squiggly-brackets, {}, represent an empty dictionary. To add items to the dictionary, you can use square brackets:

大括号,也叫花括号,就是{},代表了一个空字典。要在字典里面加项,可以使用方括号:

>>> eng2sp['one'] = 'uno'

This line creates an item that maps from the key ’one’ to the value 'uno'. If we print the dictionary again, we see a key-value pair with a colon between the key and value:

这一行代码建立了一个项,这个项映射了键 'one' 到键值 'uno'。如果我们再来打印输出一下这个字典,就会看到里面有这样一个键值对了,键值对中间用冒号隔开了:

>>> eng2sp
{'one': 'uno'}

This output format is also an input format. For example, you can create a new dictionary with three items:

这种输出的格式也可以用来输入。比如你可以这样建立一个有三个项的字典:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

But if you print eng2sp, you might be surprised:

再来输出一下,你就能看到字典建好了,但顺序不一样:

>>> eng2sp
{'one': 'uno', 'three': 'tres', 'two': 'dos'}

The order of the key-value pairs might not be the same. If you type the same example on your computer, you might get a different result. In general, the order of items in a dictionary is unpredictable.

这些键值对的顺序不一样了。如果你在你电脑上测试上面这段代码,你得到的结果也可能不一样,实际上,字典中的项的顺序是不确定的。

But that’s not a problem because the elements of a dictionary are never indexed with integer indices. Instead, you use the keys to look up the corresponding values:

但者其实也不要紧,因为字典里面的元素并不是用整数索引来排列的。所以你就可以直接用键来查找对应的键值:

>>> eng2sp['two']
'dos'

The key ’two’ always maps to the value 'dos' so the order of the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

键'two'总会映射到键值'dos',所以项的排列顺序并不要紧。
如果你字典中没有你指定的键,你就得到如下提示:

>>> eng2sp['four']
KeyError: 'four'

The len function works on dictionaries; it returns the number of key-value pairs:

len 函数也可以用在字典上;它会返回键值对的数目:

>>> len(eng2sp)
3

The in operator works on dictionaries, too; it tells you whether something appears as a key in the dictionary (appearing as a value is not good enough).

in 运算符也适用于字典;你可以用它来判断某个键是不是存在于字典中(是判断键,不能判断键值)。

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionary, you can use the method values, which returns a collection of values, and then use the in operator:

要判断键值是否在字典中,你就要用到 values 方法,这个方法会把键值返回,然后用 in 判断就可以了:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictionaries. For lists, it searches the elements of the list in order, as in Section 8.6. As the list gets longer, the search time gets longer in direct proportion.

in 运算符在字典中和列表中有不同的算法了。对列表来说,它就按照顺序搜索列表中的每一个元素,如8.6所示。随着列表越来越长了,这种搜索就消耗更多的时间,才能找到正确的位置。

For dictionaries, Python uses an algorithm called a hashtable that has a remarkable property: the in operator takes about the same amount of time no matter how many items are in the dictionary. I explain how that’s possible in Section 13.4, but the explanation might not make sense until you’ve read a few more chapters.

而对字典来说,Python 使用了一种叫做哈希表的算法,这就有一种很厉害的特性:in 运算符在对字典来使用的时候无论字典规模多大,无论里面的项有多少个,花费的时间都是基本一样的。我在13.4会解释一下其实现原理,不过你要多学几章之后才能理解对此的解释。

11.2 Dictionary as a collection of counters 用字典作为计数器

Suppose you are given a string and you want to count how many times each letter appears. There are several ways you could do it:

假设你得到一个字符串,然后你想要查一下每个字母出现了多少次。你可以通过一下方法来实现:

  1. You could create 26 variables, one for each letter of the alphabet. Then you could traverse the string and, for each character, increment the corresponding counter, probably using a chained conditional.

    你可以建立26个变量,每一个代表一个字母。然后你遍历整个字符串,每个字母的个数都累加到对应的计数器里面,可能会用到分支条件判断。

  2. You could create a list with 26 elements. Then you could convert each character to a number (using the built-in function ord), use the number as an index into the list, and increment the appropriate counter.

    你可以建立一个有26个元素的列表。然后你把每个字母转换成一个数字(用内置的 ord 函数),用这些数字作为这个列表的索引,然后累加相应的计数器。

  3. You could create a dictionary with characters as keys and counters as the corresponding values. The first time you see a character, you would add an item to the dictionary. After that you would increment the value of an existing item.

    你可以建立一个字典,用字母作为键,用该字母出现的次数作为对应的键值。第一次遇到一个字母,就在字典里面加一个项。此后再遇到这个字母,就每次在已有的项上进行累加即可。

Each of these options performs the same computation, but each of them implements that computation in a different way.

上面这些方法进行的都是一样的运算,但它们各自计算的实现方法是不同的。

An implementation is a way of performing a computation; some implementations are better than others. For example, an advantage of the dictionary implementation is that we don’t have to know ahead of time which letters appear in the string and we only have to make room for the letters that do appear.
Here is what the code might look like:

实现是一种运算进行的方式;有的实现要比其他的更好一些。比如用字典来实现的优势就是我们不需要实现知道字符串中有哪些字母,只需要为其中存在的字母来提供存储空间。
下面是代码样例:

def histogram(s):
    d = dict()
    for c in s:
        if c not in d:
            d[c] = 1
        else:
            d[c] += 1
    return d

The name of the function is histogram, which is a statistical term for a collection of counters (or frequencies).
The first line of the function creates an empty dictionary. The for loop traverses the string. Each time through the loop, if the character c is not in the dictionary, we create a new item with key c and the initial value 1 (since we have seen this letter once). If c is already in the dictionary we increment d[c].
Here’s how it works:

函数的名字为 histogram,这是一个统计学术语,意思是计数(或者频次)的集合。
函数的第一行创建了一个空字典。for 循环遍历了整个字符串、每次经过循环的时候,如果字符 c 没有在字典中,就在字典中创建一个新的项,键为 c,初始值为1(因为这就算遇到一次了)。如果 c 已经存在于字典中了,就对 d[c]进行一下累加。
下面是使用的样例:

>>> h = histogram('brontosaurus')
>>> h
{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

The histogram indicates that the letters ’a’ and 'b' appear once; 'o' appears twice, and so on.
Dictionaries have a method called get that takes a key and a default value. If the key appears in the dictionary, get returns the corresponding value; otherwise it returns the default value. For example:

histogram的结果表明字母a 和 b 出现了一次,o 出现了两次,等等。
字典有一个方法,叫做 get,接收一个键和一个默认值。如果这个键在字典中存在,get 就会返回对应的键值;如果不存在,它就会返回这个默认值。比如:

>>> h = histogram('a')
>>> h
{'a': 1}
>>> h.get('a', 0)
1
>>> h.get('b', 0)
0

As an exercise, use get to write histogram more concisely. You should be able to eliminate the if statement.

做个练习,用 get 这个方法,来缩写一下 histogram 这个函数,让它更简洁些。可以去掉那些 if 语句。

11.3 Looping and dictionaries 循环与字典

If you use a dictionary in a for statement, it traverses the keys of the dictionary. For example, print_hist prints each key and the corresponding value:

如果你在 for 语句里面用字典,程序会遍历字典中的所有键。例如下面这个 print_hist 函数就输出其中的每一个键与对应的键值:

def print_hist(h):
    for c in h:
        print(c, h[c])

Here’s what the output looks like:

输出如下所示:

>>> h = histogram('parrot')
>>> print_hist(h)
a 1 p 1 r 2 t 1 o 1

Again, the keys are in no particular order. Dictionaries have a method called keys that returns the keys of the dictionary, in no particular order, as a list. As an exercise, modify print_hist to print the keys and their values in alphabetical order.

明显这些键的输出并没有特定顺序。字典有一个内置的叫做 keys 的方法,返回字典中的所有键成一个列表,以不确定的顺序。做个练习,修改一下上面这个 print_hist 函数,让它按照字母表的顺序输出键和键值。

11.4 Reverse lookup 逆向查找

Given a dictionary d and a key k, it is easy to find the corresponding value v = d[k]. This operation is called a lookup.
But what if you have v and you want to find k? You have two problems: first, there might be more than one key that maps to the value v. Depending on the application, you might be able to pick one, or you might have to make a list that contains all of them. Second, there is no simple syntax to do a reverse lookup; you have to search.
Here is a function that takes a value and returns the first key that maps to that value:

给定一个字典 d,以及一个键 k,很容易找到对应的键值 v=d[k]。这个操作就叫查找。
但如果你有键值 v 而要找键 k 呢?你有两个问题了:首先,可能有不止一个键的键值为 v。根据应用的不同,你也许可以从中选一个,或者就可以把所有对应的键做成一个列表。其次,没有一种简单的语法能实现这样一种逆向查找;你必须搜索一下。

def reverse_lookup(d, v):
    for k in d:
        if d[k] == v:
            return k
    raise LookupError()

This function is yet another example of the search pattern, but it uses a feature we haven’t seen before, raise. The raise statement causes an exception; in this case it causes a LookupError, which is a built-in exception use to indicate that a lookup operation failed.

这个函数是搜索模式的另一个例子,用到了一个新的功能:raise。raise语句会导致一个异常;在这种情况下是 LookupError,这是一个内置异常,表示查找操作失败。

If we get to the end of the loop, that means v doesn’t appear in the dictionary as a value, so we raise an exception.
Here is an example of a successful reverse lookup:

如果我们运行了整个循环,就意味着 v 在字典中没有作为键值出现果,所以就 raise 一个异常回去。
下面是一个成功进行逆向查找的样例:

>>> h = histogram('parrot')
>>> k = reverse_lookup(h, 2)
>>> k
'r'

And an unsuccessful one:

下面这个是一个不成功的:

>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):   File "<stdin>", line 1, in <module>   File "<stdin>", line 5, in reverse_lookup ValueError

The effect when you raise an exception is the same as when Python raises one: it prints a traceback and an error message.

你自己 raise 一个异常的效果就和 Python 抛出的异常是一样的:程序会输出一个追溯以及一个错误信息。

The raise statement can take a detailed error message as an optional argument. For example:

raise 语句可以给出详细的错误信息作为可选的参数。如下所示:

>>> raise ValueError('value does not appear in the dictionary')
Traceback (most recent call last):   File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do it often, or if the dictionary gets big, the performance of your program will suffer.

逆向查找要比正常查找慢很多很多;如果要经常用到的话,或者字典变得很大了,程序的性能就会大打折扣。

11.5 Dictionaries and lists 字典和列表

Lists can appear as values in a dictionary. For example, if you are given a dictionary that maps from letters to frequencies, you might want to invert it; that is, create a dictionary that maps from frequencies to letters. Since there might be several letters with the same frequency, each value in the inverted dictionary should be a list of letters.
Here is a function that inverts a dictionary:

列表可以视作字典中的值。比如给你一个字典,映射了字符与对应的频率,你可能需要逆转一下;也就是建立一个从频率映射到字母的字典。因为可能有几个字母有同样的频率,在这个逆转字典中的每个值就应该是一个字母的列表。
下面就是一个逆转字典的函数:

def invert_dict(d):
    inverse = dict()
    for key in d:
        val = d[key]
        if val not in inverse:
            inverse[val] = [key]
        else:
            inverse[val].append(key)
    return inverse

Each time through the loop, key gets a key from d and val gets the corresponding value. If val is not in inverse, that means we haven’t seen it before, so we create a new item and initialize it with a singleton (a list that contains a single element). Otherwise we have seen this value before, so we append the corresponding key to the list.
Here is an example:

每次循环的时候,key这个变量都得到 d 中的一个键,val 获取对应的键值。如果 val 不在 inverse 这个字典里面,就意味着这是首次遇到它,所以就建立一个新项,然后用一个单元素集来初始化。否则就说明这个键值已经存在了,这样我们就在对应的键的列表中添加上新的这一个键就可以了。
下面是一个样例:

>>> hist = histogram('parrot')
>>> hist
{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}
>>> inverse = invert_dict(hist)
>>> inverse
{1: ['a', 'p', 't', 'o'], 2: ['r']}

Figure 11.1: State diagram
Figure 11.1: State diagram.


Figure 11.1 is a state diagram showing hist and inverse. A dictionary is represented as a box with the type dict above it and the key-value pairs inside. If the values are integers, floats or strings, I draw them inside the box, but I usually draw lists outside the box, just to keep the diagram simple.
Lists can be values in a dictionary, as this example shows, but they cannot be keys. Here’s what happens if you try:

图11.1为hist 和 inverse 两个字典的状态图。字典用方框表示,上方标示了类型 dict,方框内为键值对。如果键值为整数、浮点数或者字符串,就把它们放到一个方框内,不过通常我习惯把它们放到方框外面,这样图表看着简单干净。
如图所示,用字典中的键值组成列表,而不能用键。如果你要用键的话,就会遇到如下所示的错误:

>>> t = [1, 2, 3]
>>> d = dict()
>>> d[t] = 'oops'
Traceback (most recent call last):   File "<stdin>", line 1, in ? TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and that means that the keys have to be hashtable.

我之前说过,字典是用哈希表(散列表)来实现的,这就意味着所有键都必须是散列的。

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries use these integers, called hash values, to store and look up key-value pairs.

hash 是一个函数,接收任意一种值,然后返回一个整数。字典用这些整数来存储和查找键值对,这些整数也叫做哈希值。

This system works fine if the keys are immutable. But if the keys are mutable, like lists, bad things happen. For example, when you create a key-value pair, Python hashes the key and stores it in the corresponding location. If you modify the key and then hash it again, it would go to a different location. In that case you might have two entries for the same key, or you might not be able to find a key. Either way, the dictionary wouldn’t work correctly.

如果键不可修改,系统工作正常。但如果键可以修改,比如是列表,就悲剧了。例如,你创建一个键值对的时候,Python 计算键的哈希值,然后存在相应的位置。如果你修改了键,然后在计算哈希值,就不会指向同一个位置了。这时候一个键就可以有两个指向了,或者你就可能找不到某个键了。总之字典都不能正常工作了。

That’s why keys have to be hashable, and why mutable types like lists aren’t. The simplest way to get around this limitation is to use tuples, which we will see in the next chapter.
Since dictionaries are mutable, they can’t be used as keys, but they can be used as values.

这就是为什么这些键必须是散列的,而像列表这样的可变类型就不行。解决这个问题的最简单方式就是使用元组,这个我们会在下一章来学习。
因为字典是可以修改的,所以不能用来做键,只能用来做键值。

(译者注:哈希表是一种散列表,相关内容译者知道的太少,所以这段翻译的质量大打折扣,实在抱歉。)

11.6 Memos 备忘

If you played with the fibonacci function from Section 6.7, you might have noticed that the bigger the argument you provide, the longer the function takes to run. Furthermore, the run time increases quickly.
To understand why, consider Figure 11.2, which shows the call graph forfibonacci with n=4:

如果你试过了6.7中提到的斐波那契数列,你估计会发现随着参数增大,函数运行的时间也变长了。另外,运行时间的增长很显著。
要理解这是怎么回事,就要参考一下图11.2,图中展示了当 n=4的时候函数调用的情况。


Figure 11.2: Call graph
Figure 11.2: Call graph.


A call graph shows a set of function frames, with lines connecting each frame to the frames of the functions it calls. At the top of the graph, fibonacci with n=4 calls fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls fibonacciwith n=2 and n=1. And so on.

调用图展示了一系列的函数图框,图框直接的连线表示了函数只见的调用关系。顶层位置函数的参数 n =4,调用了 n=3和 n=2两种情况的函数。相应的 n=3的时候要调用 n=2和 n=1两种情况。依此类推。

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient solution to the problem, and it gets worse as the argument gets bigger.

算算fibonacci(0)和fibonacci(1)要被调用多少次吧。这样的解决方案是低效率的,随着参数增大,效率就越来越低了。

One solution is to keep track of values that have already been computed by storing them in a dictionary. A previously computed value that is stored for later use is called a memo. Here is a “memoized” version of fibonacci:

另外一种思路就是保存一下已经被计算过的值,然后保存在一个字典中。之前计算过的值存储起来,这样后续的运算中能够使用,这就叫备忘。下面是一个用这种思路来实现的斐波那契函数:

known = {0:0, 1:1}
def fibonacci(n):
    if n in known:
        return known[n]
    res = fibonacci(n-1) + fibonacci(n-2)
    known[n] = res
    return res

known is a dictionary that keeps track of the Fibonacci numbers we already know. It starts with two items: 0 maps to 0 and 1 maps to 1.

known 是一个用来保存已经计算斐波那契函数值的字典。开始项目有两个,0对应0,1对应1,各自分别是各自的斐波那契函数值。

Whenever fibonacci is called, it checks known. If the result is already there, it can return immediately. Otherwise it has to compute the new value, add it to the dictionary, and return it.
If you run this version of fibonacci and compare it with the original, you will find that it is much faster.

这样只要斐波那契函数被调用了,就会检查 known 这个字典,如果里面有计算过的可用结果,就立即返回。不然的话就计算出新的值,并且存到字典里面,然后返回这个新计算的值。
如果你运行这一个版本的斐波那契函数,你会发现比原来那个版本要快得多。

11.7 Global variables 全局变量

In the previous example, known is created outside the function, so it belongs to the special frame called main. Variables in main are sometimes called global because they can be accessed from any function. Unlike local variables, which disappear when their function ends, global variables persist from one function call to the next.

在上面的例子中,known 这个字典是在函数外创建的,所以它属于主函数内,这是一个特殊的层。在主函数中的变量也叫全局变量,因为所有函数都可以访问这些变量。局部变量在所属的函数结束后就消失了,而主函数在其他函数调用结束后依然还存在。

It is common to use global variables for flags; that is, boolean variables that indicate (“flag”) whether a condition is true. For example, some programs use a flag named verbose to control the level of detail in the output:

一般常用全局变量作为 flag,也就是标识;比如用来判断一个条件是否成立的布尔变量之类的。比如有的程序用名字为 verbose 的标识变量,来控制输出内容的详细程度:

verbose = True
def example1():
    if verbose:
        print('Running example1')

If you try to reassign a global variable, you might be surprised. The following example is supposed to keep track of whether the function has been called:

如果你想给全局变量重新赋值,结果会很意外。下面的例子中,本来是想要追踪确定函数是否被调用了:

been_called = False
def example2():
    been_called = True         # WRONG

But if you run it you will see that the value of been_called doesn’t change. The problem is that example2 creates a new local variable named been_called. The local variable goes away when the function ends, and has no effect on the global variable.

你可以运行一下,并不报错,只是 been_called 的值并不会变化。这个情况的原因是 example2这个函数创建了一个新的名为 been_called 的局部变量。函数结束之后,局部变量就释放了,并不会影响全局变量。

To reassign a global variable inside a function you have to declare the global variable before you use it:

要在函数内部来给全局变量重新赋值,必须要在使用之前声明这个全局变量:

been_called = False
    def example2():
        global been_called
        been_called = True

The global statement tells the interpreter something like, “In this function, when I say been_called, I mean the global variable; don’t create a local one.”
Here’s an example that tries to update a global variable:

global 那句代码的效果是告诉解释器:『在这个函数内,been_called 使之全局变量;不要创建一个同名的局部变量。』
下面的例子中,试图对全局变量进行更新:

count = 0
def example3():
    count = count + 1          # WRONG

If you run it you get:

运行的话,你会得到如下提示:

UnboundLocalError: local variable 'count' referenced before assignment

译者注:错误提示的意思是未绑定局部错误:局部变量 count 未经赋值就被引用。

Python assumes that count is local, and under that assumption you are reading it before writing it. The solution, again, is to declare count global.

Python 会假设这个 count 是局部的,然后基于这样的假设,你就是在写出该变量之前就试图读取。这样问题的解决方法依然就是声称count 为全局变量。

def example3():
    global count
    count += 1

If a global variable refers to a mutable value, you can modify the value without declaring the variable:

如果全局变量指向的是一个可修改的值,你可以无需声明该变量就直接修改:

known = {0:0, 1:1}
def example4():
    known[2] = 1

So you can add, remove and replace elements of a global list or dictionary, but if you want to reassign the variable, you have to declare it:

所以你可以在全局的列表或者字典里面添加、删除或者替换元素,但如果你要重新给这个全局变量赋值,就必须要声明了:

def example5():
    global known
    known = dict()

Global variables can be useful, but if you have a lot of them, and you modify them frequently, they can make programs hard to debug.

全局变量很有用,但不能滥用,要是总修改全局变量的值,就让程序很难调试了。

11.8 Debugging 调试

As you work with bigger datasets it can become unwieldy to debug by printing and checking the output by hand. Here are some suggestions for debugging large datasets:

现在数据结构逐渐复杂了,再用打印输出和手动检验的方法来调试就很费劲了。下面是一些对这种复杂数据结构下的建议:

Scale down the input:
If possible, reduce the size of the dataset. For example if the program reads a text file, start with just the first 10 lines, or with the smallest example you can find. You can either edit the files themselves, or (better) modify the program so it reads only the first n lines.

缩减输入:
尽可能缩小数据的规模。如果程序要读取一个文本文档,而只读前面的十行,或者用你能找到的最小规模的样例。你可以编辑一下文件本身,或者直接修改程序来仅读取前面的 n 行,这样更好。

If there is an error, you can reduce n to the smallest value that manifests the error, and then increase it gradually as you find and correct errors.

如果存在错误了,你可以减小一下 n,一直到错误存在的最小的 n 值,然后再逐渐增加 n,这样就能找到错误并改正了。

Check summaries and types:
Instead of printing and checking the entire dataset, consider printing summaries of the data: for example, the number of items in a dictionary or the total of a list of numbers.

检查概要和类型:
这回咱就不再打印检查整个数据表,而是打印输出数据的概要:比如字典中的项的个数,或者一个列表中的数目总和。

A common cause of runtime errors is a value that is not the right type. For debugging this kind of error, it is often enough to print the type of a value.

导致运行错误的一种常见原因就是类型错误。对这类错误进行调试,输出一下值的类型就可以了。

Write self-checks:
Sometimes you can write code to check for errors automatically. For example, if you are computing the average of a list of numbers, you could check that the result is not greater than the largest element in the list or less than the smallest. This is called a “sanity check” because it detects results that are “insane”.
Another kind of check compares the results of two different computations to see if they are consistent. This is called a “consistency check”.

写自检代码:
有时你也可以写自动检查错误的代码。举例来说,假如你计算一个列表中数字的平均值,你可以检查一下结果是不是比列表中的最大值还大或者比最小值还小。这也叫『心智检查』,因为是来检查结果是否『疯了』(译者注:也就是错得很荒诞的意思。)另外一种检查方法是用两种不同运算,然后对比结果,看看他们是否一致。后面这种叫『一致性检查』。

Format the output:
Formatting debugging output can make it easier to spot an error. We saw an example in Section 6.9. The pprint module provides a pprint function that displays built-in types in a more human-readable format (pprint stands for “pretty print”).

格式化输出:
格式化的调试输出,更容易找到错误。在6.9的时候我们见过一个例子了。pprint 模块内置了一个 pprint 函数,该函数能够把内置的类型用人读起来更容易的格式来显示出来(pprint 就是『pretty print』的缩写)。

Again, time you spend building scaffolding can reduce the time you spend debugging.

再次强调一下,搭建脚手架代码的时间越长,用来调试的时间就会相应地缩短。

11.9 Glossary 术语列表

mapping:
A relationship in which each element of one set corresponds to an element of another set.

映射:一组数据中元素与另一组数据中元素的一一对应的关系。

dictionary:
A mapping from keys to their corresponding values.

字典:从键到对应键值的映射。

key-value pair:
The representation of the mapping from a key to a value.

键值对:有映射关系的一对键和对应的键值。

item:
In a dictionary, another name for a key-value pair.

项:字典中键值对也叫项。

key:
An object that appears in a dictionary as the first part of a key-value pair.

键:字典中的一个对象,键值对中的第一部分。

value:
An object that appears in a dictionary as the second part of a key-value pair. This is more specific than our previous use of the word “value”.

键值:字典中的一个对象,键值对的第二部分。这个和之前提到的值不同,在字典使用过程中指代的是键值,而不是数值。

implementation:
A way of performing a computation.

实现:进行计算的一种方式。

hashtable:
The algorithm used to implement Python dictionaries.

哈希表:Python 实现字典的一种算法。

hash function:
A function used by a hashtable to compute the location for a key.

哈希函数:哈希表使用的一种函数,能计算出一个键的位置。

hashable:
A type that has a hash function. Immutable types like integers, floats and strings are hashable; mutable types like lists and dictionaries are not.

散列的:一种类型,有哈希函数。不可变类型比如整形、浮点数和字符串都是散列的;可变类型比如列表和字典则不是。
(译者注:这段我翻译的很狗,因为术语不是很熟悉,等有空我再查查去。)

lookup:
A dictionary operation that takes a key and finds the corresponding value.

查找:字典操作的一种,根据已有的键查找对应的键值。

reverse lookup:
A dictionary operation that takes a value and finds one or more keys that map to it.

逆向查找:字典操作的一种,根据一个键值找对应的一个或者多个键。

raise statement:
A statement that (deliberately) raises an exception.

raise 语句:特地要求抛出异常的一个语句。

singleton:
A list (or other sequence) with a single element.

单元素集:只含有一个单独元素的列表或者其他序列。

call graph:
A diagram that shows every frame created during the execution of a program, with an arrow from each caller to each callee.

调用图:一种图解,解释程序运行过程中每一个步骤,用箭头来来连接调用者和被调用者之间。

memo:
A computed value stored to avoid unnecessary future computation.

备忘:将计算得到的值存储起来,避免后续的额外计算。

global variable:
A variable defined outside a function. Global variables can be accessed from any function.

全局变量:函数外定义的变量。全局变量能被所有函数来读取使用。

global statement:
A statement that declares a variable name global.

global 语句:声明一个变量为全局的语句。

flag:
A boolean variable used to indicate whether a condition is true.

标识:一个布尔变量,用来指示一个条件是否为真。

declaration:
A statement like global that tells the interpreter something about a variable.

声明:比如 global 这样的语句,用来告诉解释器变量的特征。

11.10 Exercises 练习

Exercise 1 练习1

Write a function that reads the words in words.txt and stores them as keys in a dictionary. It doesn’t matter what the values are. Then you can use the in operator as a fast way to check whether a string is in the dictionary.
If you did Exercise 10, you can compare the speed of this implementation with the list in operator and the bisection search.

写一个函数来读取 words.txt 文件中的单词,然后作为键存到一个字典中。键值是什么不要紧。然后用 in 运算符来快速检查一个字符串是否在字典中。
如果你做过第十章的练习,你可以对比一下这种实现和列表中的 in 运算符以及对折搜索的速度。

Exercise 2 练习2

Read the documentation of the dictionary method setdefault and use it to write a more concise version of invert_dict. (Solution)[http://thinkpython2.com/code/invert_dict.py].

读一下字典中 setdefault 方法的相关文档,然后用这个方法来写一个更精简版本的 invert_dict 函数。 (S样例代码)[[http://thinkpython2.com/code/invert_dict.py]。](http://thinkpython2.com/code/invert_dict.py]。)

Exercise 3 练习3

Memoize the Ackermann function from Exercise 2 and see if memoization makes it possible to evaluate the function with bigger arguments. Hint: no. (Solution)[http://thinkpython2.com/code/ackermann_memo.py].

用备忘的方法来改进一下第二章练习中的Ackermann函数,看看是不是能让让函数处理更大的参数。提示:不行。(样例代码)[[http://thinkpython2.com/code/ackermann_memo.py]。](http://thinkpython2.com/code/ackermann_memo.py]。)

Exercise 4 练习4

If you did Exercise 7, you already have a function named has_duplicates that takes a list as a parameter and returns True if there is any object that appears more than once in the list.
Use a dictionary to write a faster, simpler version of has_duplicates. (Solution)[http://thinkpython2.com/code/has_duplicates.py].

如果你做过了第七章的练习,应该已经写过一个名叫 has_duplicates 的函数了,这个函数用列表做参数,如果里面有元素出现了重复,就返回真。
用字典来写一个更快速更简单的版本。(样例代码)[[http://thinkpython2.com/code/has_duplicates.py]。](http://thinkpython2.com/code/has_duplicates.py]。)

Exercise 5 练习5

Two words are “rotate pairs” if you can rotate one of them and get the other (see rotate_word in Exercise 5).
Write a program that reads a word list and finds all the rotate pairs. (Solution)[http://thinkpython2.com/code/rotate_pairs.py].

一个词如果翻转顺序成为另外一个词,这两个词就为『翻转词对』(参见第五章练习的 rotate_word,译者注:作者这个练习我没找到。。。)。
写一个函数读取一个单词表,然后找到所有这样的单词对。(样例代码)[http://thinkpython2.com/code/rotate_pairs.py].

Exercise 6 练习6

Here’s another Puzzler from (Car Talk)[http://www.cartalk.com/content/puzzlers]:
This was sent in by a fellow named Dan O’Leary. He came upon a common one-syllable, five-letter word recently that has the following unique property. When you remove the first letter, the remaining letters form a homophone of the original word, that is a word that sounds exactly the same. Replace the first letter, that is, put it back and remove the second letter and the result is yet another homophone of the original word. And the question is, what’s the word?

下面是一个来自(Car Talk)[[http://www.cartalk.com/content/puzzlers]的谜语:](http://www.cartalk.com/content/puzzlers]的谜语:)
这条谜语来自一个名叫 Dan O'Leary的朋友。他最近发现一个单词,这个单词有一个音节,五个字母,然后有以下所述的特定性质。
去掉第一个字母,得到的是与原词同音异形异义词,发音与原词一模一样。替换一下首字母,也就是把第一个字母放回去,然后把第二个字母去掉,得到的是另外一个这样的同音异形异义词。那么问题来了,这是个什么词呢?

Now I’m going to give you an example that doesn’t work. Let’s look at the five-letter word, ‘wrack.’ W-R-A-C-K, you know like to ‘wrack with pain.’ If I remove the first letter, I am left with a four-letter word, ’R-A-C-K.’ As in, ‘Holy cow, did you see the rack on that buck! It must have been a nine-pointer!’ It’s a perfect homophone. If you put the ‘w’ back, and remove the ‘r,’ instead, you’re left with the word, ‘wack,’ which is a real word, it’s just not a homophone of the other two words.

现在我给你提供一个错误的例子。咱们先看一下五个字母的单词,「wrack」。去掉第一个字母,得到的四个字母单词是「R-A-C-K」。但去掉第二个字母得到的是「W-A-C-K」,这就不是前两个词的同音异形异义词。(译者注:词义的细节就略去了,没有太大必要。)

But there is, however, at least one word that Dan and we know of, which will yield two homophones if you remove either of the first two letters to make two, new four-letter words. The question is, what’s the word?

但这个词至少有一个,Dan 和咱们都知道的,分别删除前两个字母会产生两个同音异形异义的四个字母的单词。问题就是,这是哪个词?

You can use the dictionary from Exercise 1 to check whether a string is in the word list.
To check whether two words are homophones, you can use the CMU Pronouncing Dictionary. You can download it from (Here)[http://www.speech.cs.cmu.edu/cgi-bin/cmudict] or from (Here)[http://thinkpython2.com/code/c06d] and you can also download (Here)[http://thinkpython2.com/code/pronounce.py], which provides a function namedread_dictionary that reads the pronouncing dictionary and returns a Python dictionary that maps from each word to a string that describes its primary pronunciation.
Write a program that lists all the words that solve the Puzzler. (Solution)[http://thinkpython2.com/code/homophone.py].

你可以用本章练习1的字典来检查一个字符串是否在一个字典之中。检查两个单词是不是同音异形异义词,可以用 CMU 发音字典。可以从(这里)[[http://www.speech.cs.cmu.edu/cgi-bin/cmudict]或者(这里)[http://thinkpython2.com/code/c06d]或者(这里)[http://thinkpython2.com/code/pronounce.py]来下载,](http://www.speech.cs.cmu.edu/cgi-bin/cmudict]或者(这里)[http://thinkpython2.com/code/c06d]或者(这里)[http://thinkpython2.com/code/pronounce.py]来下载,) 该字典提供了一个名为read_dictionary的函数,该函数会读取发音词典,然后返回一个 Python 词典,返回的这个词典会映射每一个单词到描述单词读音的字符串。
写一个函数来找到所有满足谜语要求的单词。(样例代码)[[http://thinkpython2.com/code/homophone.py]。](http://thinkpython2.com/code/homophone.py]。)