There is a stone game.At the beginning of the game the player picks
n
piles of stones in a line.The goal is to merge the stones in one pile observing the following rules:
- At each step of the game, the player can merge two adjacent piles to a new pile.
- The score is the number of stones in the new pile.
You are to determine the minimum of the total score.
Example
For
[4, 1, 1, 4]
, in the best solution, the total score is18
:1. Merge second and third piles => [4, 2, 4], score +2 2. Merge the first two piles => [6, 4],score +6 3. Merge the last two piles => [10], score +10
Other two examples:
[1, 1, 1, 1]
return8
[4, 4, 5, 9]
return43
一堆石头,每个石头代表一个值。每次可以合并两个相邻的石头,得分是合并后的和。一直合并,同时累计得分,直到变成一个石头,并求出得分最小的值。
这道题可用DP解。
dp[i][j]
表示合并i到j的石头需要的最小代价。
转移函数:
dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j]
(i<=k<j)。即合并i-j的代价为合并左边部分的代价+合并右边部分的代价+合并左右部分的代价(即i-j所有元素的总和)。找到使dp[i][j]
最小的k。
DP四要素
dp[i][j]
表示把第i到第j个石子合并到一起的最小花费sum[i][j]
表示i到j所有石子价值和dp[i][j] = min(dp[i][k]+dp[k+1][j]+sum[i][j])
对于所有k
属于{i,j}
dp[i][i] = 0
dp[0][n-1]
区间型DP,利用二维数组下标表示下标范围。 需要注意的是对状态转移方程的理解,也就是对每一种分割方式进行遍历。
public class Solution {
/**
* @param A an integer array
* @return an integer
*/
public int stoneGame(int[] A) {
// Write your code here
// DP
if(A == null || A.length == 0){
return 0;
}
int n = A.length;
int[][] sum = new int[n][n];
for(int i = 0; i < n; i++){
sum[i][i] = A[i];
for(int j = i + 1; j < n; j++){
sum[i][j] = sum[i][j - 1] + A[j];
}
}
int[][] dp = new int[n][n];
for(int i = 0; i < n; i++){
dp[i][i] = 0;
}
for(int len = 2; len <= n; len++){
for(int i = 0; i + len - 1 < n; i++){
int j = i + len - 1;
int min = Integer.MAX_VALUE;
for(int k = i; k < j; k++){
min = Math.min(min, dp[i][k] + dp[k + 1][j]);
}
dp[i][j] = min + sum[i][j];
}
}
return dp[0][n - 1];
}
}