Python并行编程

 主页   资讯   文章   代码   电子书 

并行计算的内存架构

根据指令的同时执行和数据的同时执行,计算机系统可以分成以下四类:

  • 单处理器,单数据 (SISD)
  • 单处理器,多数据 (SIMD)
  • 多处理器,单数据 (MISD)
  • 多处理器,多数据 (MIMD)

这种分类方法叫做"费林分类":

image

SISD

单处理器单数据就是"单CPU的机器",它在单一的数据流上执行指令。在SISD中,指令被顺序地执行。

对于每一个"CPU时钟",CPU按照下面的顺序执行:

  • Fetch: CPU 从一片内存区域中(寄存器)获得数据和指令
  • Decode: CPU对指令进行解码
  • Execute: 该执行在数据上执行,将结果保存在另一个寄存器中

当Execute阶段完成之后,CPU回到步骤1准备执行下一个时钟循环。

image

运行在这些计算机上的算法是顺序执行的(连续的),不存在任何并行。只有一个CPU的硬件系统就是SISD的例子。

这种架构(冯·诺依曼体系)的主要元素有以下:

  • 中心内存单元:存储指令和数据
  • CPU:用于从内存单元获得指令/数据,对指令解码并顺序执行它们
  • I/O系统:程序的输入和输出流

传统的单处理器计算机都是经典的SISD系统。下图表述了CPU在Fetch、Decode、Execute的步骤中分别用到了哪些单元:

image

MISD

这种模型中,有n个处理器,每一个都有自己的控制单元,共享同一个内存单元。在每一个CPU时钟中,从内存获得的数据会被所有的处理器同时处理,每一个处理器按照自己的控制单元发送的指令处理。在这种情况下,并行实际上是指令层面的并行,多个指令在相同的数据上操作。能够合理利用这种架构的问题模型比较特殊,例如数据加密等。因此,MISD在现实中并没有很多用武之地,更多的是作为一个抽象模型的存在。

image

SIMD

SIMD计算机包括多个独立的处理器,每一个都有自己的局部内存,可以用来存储数据。所有的处理器都在单一指令流下工作;具体说,就是有n个数据流,每个处理器处理一个。所有的处理器同时处理每一步,在不同的数据上执行相同的指令。这是一个数据并行的例子。SIMD架构比MISD架构要实用的多。很多问题都可以用SIMD计算机的架构来解决。这种架构另一个有趣的特性是,这种架构的算法非常好设计,分析和实现。限制是,只有可以被分解成很多个小问题(小问题之间要独立,可以不分先后顺序被相同的指令执行)的问题才可以用这种架构解决。很多超级计算机就是使用这架构设计出来的。例如Connection Machine(1985年的 Thinking Machine)和MPP(NASA-1983).我们在第六章 GPU Python编程中会接触到高级的现代图形处理器(GPU),这种处理器就是内置了很多个SIMD处理单元,使这种架构在今天应用非常广泛。

MIMD

在费林分类中,这种计算机是最广泛使用、也是最强大的一个种类。这种架构有n个处理器,n个指令流,n个数据流。每一个处理器都有自己的控制单元和局部内存,让MIMD架构比SIMD架构的计算能力更强。每一个处理器都在独立的控制单元分配的指令流下工作;因此,处理器可以在不同的数据上运行不同的程序,这样可以解决完全不同的子问题甚至是单一的大问题。在MIMD中,架构是通过线程或进程层面的并行来实现的,这也意味着处理器一般是异步工作的。这种类型的计算机通常用来解决那些没有统一结构、无法用SIMD来解决的问题。如今,很多计算机都应用了这中间架构,例如超级计算机,计算机网络等。然而,有一个问题不得不考虑:异步的算法非常难设计、分析和实现。

image